These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34371026)

  • 1. Xenobiotic transport and metabolism in the human brain.
    Silva-Adaya D; Garza-Lombó C; Gonsebatt ME
    Neurotoxicology; 2021 Sep; 86():125-138. PubMed ID: 34371026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of phase I, II and III drug metabolism/transport by xenobiotics.
    Xu C; Li CY; Kong AN
    Arch Pharm Res; 2005 Mar; 28(3):249-68. PubMed ID: 15832810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of transporters and enzymes from blood-cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake.
    Wang Q; Zuo Z
    Expert Opin Drug Metab Toxicol; 2018 Sep; 14(9):961-972. PubMed ID: 30118608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors.
    Xu D; Huang S; Wang H; Xie W
    Drug Metab Rev; 2018 Nov; 50(4):407-414. PubMed ID: 30501435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior.
    Hindle SJ; Munji RN; Dolghih E; Gaskins G; Orng S; Ishimoto H; Soung A; DeSalvo M; Kitamoto T; Keiser MJ; Jacobson MP; Daneman R; Bainton RJ
    Cell Rep; 2017 Oct; 21(5):1304-1316. PubMed ID: 29091768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain.
    García-Suástegui WA; Ramos-Chávez LA; Rubio-Osornio M; Calvillo-Velasco M; Atzin-Méndez JA; Guevara J; Silva-Adaya D
    Oxid Med Cell Longev; 2017; 2017():4680732. PubMed ID: 28163821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier.
    Minn A; Leclerc S; Heydel JM; Minn AL; Denizcot C; Cattarelli M; Netter P; Gradinaru D
    J Drug Target; 2002 Jun; 10(4):285-96. PubMed ID: 12164377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Multi-disciplinary research approaches on the brain barrier transport system, a dynamic interface].
    Tachikawa M; Uchida Y; Terasaki T
    Brain Nerve; 2013 Feb; 65(2):121-36. PubMed ID: 23399670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [THE SYSTEM OF XENOBIOTICS BIOTRANSFORMATION OF HELMINTHS. RESEMBLANCE AND DIFFERENSES FROM SIMILAR HOST SYSTEMS (REWEW)].
    Smirnov LP; Borvinskaya EV; Suhovskaya IV
    Parazitologiia; 2016; 50(6):432-45. PubMed ID: 29215225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology and methodology.
    Terasaki T; Ohtsuki S
    NeuroRx; 2005 Jan; 2(1):63-72. PubMed ID: 15717058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of Novel Methodology and Its Application for Clarifying the Transport Function of the Blood-brain Barrier].
    Terasaki T
    Yakugaku Zasshi; 2021; 141(4):447-462. PubMed ID: 33790111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes.
    Rushmore TH; Kong AN
    Curr Drug Metab; 2002 Oct; 3(5):481-90. PubMed ID: 12369894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenobiotic Metabolising Enzymes: Impact on Pathologic Conditions, Drug Interactions and Drug Design.
    Rekka EA; Kourounakis PN; Pantelidou M
    Curr Top Med Chem; 2019; 19(4):276-291. PubMed ID: 30706817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain.
    Akanuma SI; Yamazaki Y; Kubo Y; Hosoya KI
    Fluids Barriers CNS; 2018 Jan; 15(1):1. PubMed ID: 29307307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach.
    Castell JV; Donato MT; Gómez-Lechón MJ
    Exp Toxicol Pathol; 2005 Jul; 57 Suppl 1():189-204. PubMed ID: 16092727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain.
    Chaves C; Remiao F; Cisternino S; Decleves X
    Curr Neuropharmacol; 2017 Nov; 15(8):1156-1173. PubMed ID: 28474563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ sites for xenobiotic activation and detoxication: implications for the differential susceptibility of cells to the toxic actions of environmental chemicals.
    Baron J
    Prog Histochem Cytochem; 1991; 23(1-4):32-44. PubMed ID: 1947157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacogenetics, pharmacogenomics and epigenetics of Nrf2-regulated xenobiotic-metabolizing enzymes and transporters by dietary phytochemical and cancer chemoprevention.
    Wu TY; Khor TO; Lee JH; Cheung KL; Shu L; Chen C; Kong AN
    Curr Drug Metab; 2013 Jul; 14(6):688-94. PubMed ID: 23869812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism.
    Döring B; Petzinger E
    Drug Metab Rev; 2014 Aug; 46(3):261-82. PubMed ID: 24483608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The blood-brain barrier efflux transporters as a detoxifying system for the brain.
    Terasaki T; Hosoya K
    Adv Drug Deliv Rev; 1999 Apr; 36(2-3):195-209. PubMed ID: 10837716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.