BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34371043)

  • 1. Production of nanocellulose gels and films from invasive tree species.
    Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF
    Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential.
    Jasmani L; Adnan S
    Carbohydr Polym; 2017 Apr; 161():166-171. PubMed ID: 28189225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties.
    Spence KL; Venditti RA; Habibi Y; Rojas OJ; Pawlak JJ
    Bioresour Technol; 2010 Aug; 101(15):5961-8. PubMed ID: 20335025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups.
    Shimizu M; Fukuzumi H; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation.
    Mendoza DJ; Hossain L; Browne C; Raghuwanshi VS; Simon GP; Garnier G
    Carbohydr Polym; 2020 Oct; 245():116566. PubMed ID: 32718648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: Formation mechanism of disordered regions along each cellulose microfibril.
    Funahashi R; Ono Y; Tanaka R; Yokoi M; Daido K; Inamochi T; Saito T; Horikawa Y; Isogai A
    Int J Biol Macromol; 2018 Apr; 109():914-920. PubMed ID: 29146560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.
    Aulin C; Salazar-Alvarez G; Lindström T
    Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films.
    Barbash VA; Yaschenko OV; Alushkin SV; Kondratyuk AS; Posudievsky OY; Koshechko VG
    Nanoscale Res Lett; 2016 Dec; 11(1):410. PubMed ID: 27644236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species.
    Domínguez E; Romaní A; Alonso JL; Parajó JC; Yáñez R
    Bioresour Technol; 2014 Dec; 173():301-308. PubMed ID: 25310866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.