These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 34371052)

  • 1. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostable cellulases: Current status and perspectives.
    Patel AK; Singhania RR; Sim SJ; Pandey A
    Bioresour Technol; 2019 May; 279():385-392. PubMed ID: 30685132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
    Contreras F; Pramanik S; Rozhkova AM; Zorov IN; Korotkova O; Sinitsyn AP; Schwaneberg U; Davari MD
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.
    Thomas L; Ram H; Kumar A; Singh VP
    Appl Biochem Biotechnol; 2016 Jul; 179(5):863-79. PubMed ID: 26956574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches for improving thermostability characteristics in cellulases.
    Anbar M; Bayer EA
    Methods Enzymol; 2012; 510():261-71. PubMed ID: 22608731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating the thermostability of Endoglucanase I from Trichoderma reesei using computational approaches.
    Bayram Akcapinar G; Venturini A; Martelli PL; Casadio R; Sezerman UO
    Protein Eng Des Sel; 2015 May; 28(5):127-35. PubMed ID: 25784767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?
    Dogaris I; Mamma D; Kekos D
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1457-73. PubMed ID: 23318834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and Characterization of a Thermostable Cellobiohydrolase from Thermotoga petrophila.
    Haq IU; Tahir SF; Aftab MN; Akram F; Asad-Ur-Rehman ; Nawaz A; Mukhtar H
    Protein Pept Lett; 2018; 25(11):1003-1014. PubMed ID: 30406735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery.
    Xu J; Xiong P; He B
    Bioresour Technol; 2016 Jan; 200():961-70. PubMed ID: 26602145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cellulases for conversion of lignocellulosic biomass.
    Chaudhari YB; Várnai A; Sørlie M; Horn SJ; Eijsink VGH
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 36892404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential.
    Paul M; Mohapatra S; Kumar Das Mohapatra P; Thatoi H
    Bioresour Technol; 2021 Nov; 340():125710. PubMed ID: 34365301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of fermentable glucose from bioconversion of cellulose using efficient microbial cellulases produced from water hyacinth waste.
    Tripathi M; Lal B; Syed A; Mishra PK; Elgorban AM; Verma M; Singh R; Mohammad A; Srivastava N
    Int J Biol Macromol; 2023 Dec; 252():126376. PubMed ID: 37595712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective.
    Ajeje SB; Hu Y; Song G; Peter SB; Afful RG; Sun F; Asadollahi MA; Amiri H; Abdulkhani A; Sun H
    Front Bioeng Biotechnol; 2021; 9():794304. PubMed ID: 34976981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutral and alkaline cellulases: Production, engineering, and applications.
    Ben Hmad I; Gargouri A
    J Basic Microbiol; 2017 Aug; 57(8):653-658. PubMed ID: 28503798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.
    Yamada R; Hasunuma T; Kondo A
    Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.