These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Splicing regulation through biomolecular condensates and membraneless organelles. Giudice J; Jiang H Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325 [TBL] [Abstract][Full Text] [Related]
5. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786 [TBL] [Abstract][Full Text] [Related]
7. Higher-order organization of biomolecular condensates. Fare CM; Villani A; Drake LE; Shorter J Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784 [TBL] [Abstract][Full Text] [Related]
8. Liquid-liquid Phase Separation in Viral Function. Zhang X; Zheng R; Li Z; Ma J J Mol Biol; 2023 Aug; 435(16):167955. PubMed ID: 36642156 [TBL] [Abstract][Full Text] [Related]
9. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates. Zheng H; Zhang H Bioessays; 2024 Mar; 46(3):e2300203. PubMed ID: 38175843 [TBL] [Abstract][Full Text] [Related]
10. Liquid-liquid phase separation in human health and diseases. Wang B; Zhang L; Dai T; Qin Z; Lu H; Zhang L; Zhou F Signal Transduct Target Ther; 2021 Aug; 6(1):290. PubMed ID: 34334791 [TBL] [Abstract][Full Text] [Related]
11. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates. Valyaeva AA; Sheval EV Biochemistry (Mosc); 2024 Apr; 89(4):688-700. PubMed ID: 38831505 [TBL] [Abstract][Full Text] [Related]
12. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Rai SK; Savastano A; Singh P; Mukhopadhyay S; Zweckstetter M Protein Sci; 2021 Jul; 30(7):1294-1314. PubMed ID: 33930220 [TBL] [Abstract][Full Text] [Related]
13. Biomolecular condensates and disease pathogenesis. Ruan K; Bai G; Fang Y; Li D; Li T; Liu X; Lu B; Lu Q; Songyang Z; Sun S; Wang Z; Zhang X; Zhou W; Zhang H Sci China Life Sci; 2024 Sep; 67(9):1792-1832. PubMed ID: 39037698 [TBL] [Abstract][Full Text] [Related]
14. RNA in formation and regulation of transcriptional condensates. Sharp PA; Chakraborty AK; Henninger JE; Young RA RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787 [TBL] [Abstract][Full Text] [Related]
15. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. Scholl D; Deniz AA J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801 [TBL] [Abstract][Full Text] [Related]
17. Protein phase separation and its role in chromatin organization and diseases. Li J; Zhang Y; Chen X; Ma L; Li P; Yu H Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580 [TBL] [Abstract][Full Text] [Related]
18. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Alberti S; Gladfelter A; Mittag T Cell; 2019 Jan; 176(3):419-434. PubMed ID: 30682370 [TBL] [Abstract][Full Text] [Related]
19. Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. Hirai Y; Tomonaga K; Horie M Int J Biol Macromol; 2021 Dec; 192():55-63. PubMed ID: 34606793 [TBL] [Abstract][Full Text] [Related]
20. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. Li W; Jiang H J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]