These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34371231)

  • 1. Comparing the bacterial growth potential of ultra-low nutrient drinking water assessed by growth tests based on flow cytometric intact cell count versus adenosine triphosphate.
    Sousi M; Salinas-Rodriguez SG; Liu G; Dusseldorp J; Kemperman AJB; Schippers JC; Van der Meer WGJ; Kennedy MD
    Water Res; 2021 Sep; 203():117506. PubMed ID: 34371231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further developing the bacterial growth potential method for ultra-pure drinking water produced by remineralization of reverse osmosis permeate.
    Sousi M; Liu G; Salinas-Rodriguez SG; Knezev A; Blankert B; Schippers JC; van der Meer W; Kennedy MD
    Water Res; 2018 Nov; 145():687-696. PubMed ID: 30212807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment.
    Sousi M; Liu G; Salinas-Rodriguez SG; Chen L; Dusseldorp J; Wessels P; Schippers JC; Kennedy MD; van der Meer W
    Water Res; 2020 Nov; 186():116317. PubMed ID: 32841931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Bacterial Growth Potential of Ultra-Low Nutrient Drinking Water Produced by Reverse Osmosis: Effect of Sample Pre-treatment and Bacterial Inoculum.
    Sousi M; Salinas-Rodriguez SG; Liu G; Schippers JC; Kennedy MD; van der Meer W
    Front Microbiol; 2020; 11():791. PubMed ID: 32411118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Legionella growth potential of drinking water produced by a reverse osmosis pilot plant.
    Learbuch KLG; Lut MC; Liu G; Smidt H; van der Wielen PWJJ
    Water Res; 2019 Jun; 157():55-63. PubMed ID: 30952008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.
    Park SK; Hu JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):968-77. PubMed ID: 20512722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of DNA extraction yield from a chlorinated drinking water distribution system.
    Putri RE; Kim LH; Farhat N; Felemban M; Saikaly PE; Vrouwenvelder JS
    PLoS One; 2021; 16(6):e0253799. PubMed ID: 34166448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.
    Vingerhoeds MH; Nijenhuis-de Vries MA; Ruepert N; van der Laan H; Bredie WLP; Kremer S
    Water Res; 2016 May; 94():42-51. PubMed ID: 26925543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.
    Nescerecka A; Juhna T; Hammes F
    Water Res; 2018 May; 135():11-21. PubMed ID: 29448079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A uniform bacterial growth potential assay for different water types.
    Farhat N; Hammes F; Prest E; Vrouwenvelder J
    Water Res; 2018 Oct; 142():227-235. PubMed ID: 29886404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofouling control by phosphorus limitation strongly depends on the assimilable organic carbon concentration.
    Javier L; Farhat NM; Desmond P; Linares RV; Bucs S; Kruithof JC; Vrouwenvelder JS
    Water Res; 2020 Sep; 183():116051. PubMed ID: 32622233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated pressurization as a potential cause of deterioration in virus removal by aged reverse osmosis membrane used in households.
    Torii S; Hashimoto T; Do AT; Furumai H; Katayama H
    Sci Total Environ; 2019 Dec; 695():133814. PubMed ID: 31421339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using coagulation to restrict microbial re-growth in tap water by phosphate limitation in water treatment.
    Wen G; Ma J; Huang TL; Egli T
    J Hazard Mater; 2014 Sep; 280():348-55. PubMed ID: 25179107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
    Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T
    Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.
    Weinrich L; LeChevallier M; Haas CN
    Water Res; 2016 Sep; 101():203-213. PubMed ID: 27262548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies.
    Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK
    Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of online bacterial particle counts for monitoring the performance of reverse osmosis membrane process in potable reuse.
    Fujioka T; Makabe R; Mori N; Snyder SA; Leddy M
    Sci Total Environ; 2019 Jun; 667():540-544. PubMed ID: 30833252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.
    Belila A; El-Chakhtoura J; Otaibi N; Muyzer G; Gonzalez-Gil G; Saikaly PE; van Loosdrecht MCM; Vrouwenvelder JS
    Water Res; 2016 May; 94():62-72. PubMed ID: 26925544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment.
    Albergamo V; Blankert B; Cornelissen ER; Hofs B; Knibbe WJ; van der Meer W; de Voogt P
    Water Res; 2019 Jan; 148():535-545. PubMed ID: 30414537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.