BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34371277)

  • 1. Binding parameters and molecular dynamics of β-lactoglobulin-vanillic acid complexation as a function of pH - part B: Neutral pH.
    Abdollahi K; Condict L; Hung A; Kasapis S
    Food Chem; 2022 Jan; 367():130655. PubMed ID: 34371277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding parameters and molecular dynamics of β-lactoglobulin-vanillic acid complexation as a function of pH - Part A: Acidic pH.
    Abdollahi K; Condict L; Hung A; Kasapis S
    Food Chem; 2021 Oct; 360():130059. PubMed ID: 34029923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Dependent complexation between β-lactoglobulin and lycopene: Multi-spectroscopy, molecular docking and dynamic simulation study.
    Wang C; Chen L; Lu Y; Liu J; Zhao R; Sun Y; Sun B; Cuina W
    Food Chem; 2021 Nov; 362():130230. PubMed ID: 34098435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding interaction of a potential statin with β-lactoglobulin: An in silico approach.
    Baruah I; Borgohain G
    J Mol Graph Model; 2022 Mar; 111():108077. PubMed ID: 34826718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and energetic requirements for a second binding site at the dimeric β-lactoglobulin interface.
    Bello M
    J Biomol Struct Dyn; 2016 Sep; 34(9):1884-902. PubMed ID: 26375627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies.
    Taulier N; Chalikian TV
    J Mol Biol; 2001 Dec; 314(4):873-89. PubMed ID: 11734004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined multispectroscopic and molecular dynamics simulation investigation on the interaction between cyclosporine A and β-lactoglobulin.
    Mohseni-Shahri FS; Moeinpour F; Malaekeh-Nikouei B; Nassirli H
    Int J Biol Macromol; 2017 Feb; 95():1-7. PubMed ID: 27838419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approach to Study pH-Dependent Protein Association Using Constant-pH Molecular Dynamics: Application to the Dimerization of β-Lactoglobulin.
    da Rocha L; Baptista AM; Campos SRR
    J Chem Theory Comput; 2022 Mar; 18(3):1982-2001. PubMed ID: 35171602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding and self-association cooperativity of β-lactoglobulin.
    Gutiérrez-Magdaleno G; Bello M; Portillo-Téllez MC; Rodríguez-Romero A; García-Hernández E
    J Mol Recognit; 2013 Feb; 26(2):67-75. PubMed ID: 23334914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic of interaction mechanism between β-lactoglobulin and nobiletin: A multi-spectroscopic, thermodynamics methods and docking study.
    Dan Q; Xiong W; Liang H; Wu D; Zhan F; Chen Y; Ding S; Li B
    Food Res Int; 2019 Jun; 120():255-263. PubMed ID: 31000237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical and computational comparison on the binding affinity of three important nutrients to β-lactoglobulin: folic acid, ascorbic acid and vitamin K3.
    Shahraki S; Heydari A; Saeidifar M; Gomroki M
    J Biomol Struct Dyn; 2018 Nov; 36(14):3651-3665. PubMed ID: 29058531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and stability of thiol-modified bovine beta-lactoglobulin.
    Sakai K; Sakurai K; Sakai M; Hoshino M; Goto Y
    Protein Sci; 2000 Sep; 9(9):1719-29. PubMed ID: 11045618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin.
    Ghalandari B; Divsalar A; Saboury AA; Haertlé T; Parivar K; Bazl R; Eslami-Moghadam M; Amanlou M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():1038-46. PubMed ID: 24161866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the fatty acid binding site of beta-lactoglobulins.
    Frapin D; Dufour E; Haertle T
    J Protein Chem; 1993 Aug; 12(4):443-9. PubMed ID: 8251064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin.
    Cheng J; Liu JH; Prasanna G; Jing P
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):965-972. PubMed ID: 28751048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of β-lactoglobulin in complex with dodecyl sulfate and laurate: a molecular dynamics study.
    Bello M; Gutiérrez G; García-Hernández E
    Biophys Chem; 2012 May; 165-166():79-86. PubMed ID: 22498503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking.
    Li T; Hu P; Dai T; Li P; Ye X; Chen J; Liu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():197-206. PubMed ID: 29753236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural mechanism of the Tanford transition of bovine β-lactoglobulin through microsecond molecular dynamics simulations.
    Bello M
    J Biomol Struct Dyn; 2022 Apr; 40(7):3011-3023. PubMed ID: 33155532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing of the interaction between β-lactoglobulin and the anticancer drug oxaliplatin.
    Ghalandari B; Divsalar A; Eslami-Moghadam M; Saboury AA; Haertlé T; Amanlou M; Parivar K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):974-87. PubMed ID: 25351630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.