These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34372159)

  • 1. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams.
    Coccia F; Gryshchuk L; Moimare P; Bossa FL; Santillo C; Barak-Kulbak E; Verdolotti L; Boggioni L; Lama GC
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Different Methods to Synthesize Polyol-Grafted-Cellulose Nanocrystals as Inter-Active Filler in Bio-Based Polyurethane Foams.
    Fontana D; Recupido F; Lama GC; Liu J; Boggioni L; Silvano S; Lavorgna M; Verdolotti L
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Filler.
    Uram K; Leszczyńska M; Prociak A; Czajka A; Gloc M; Leszczyński MK; Michałowski S; Ryszkowska J
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil.
    Kim HJ; Jin X; Choi JW
    Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose-Based Polyurethane Foams of Low Flammability.
    Szpiłyk M; Lubczak R; Lubczak J
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties.
    Lee JH; Kim SH; Oh KW
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties.
    De Luca Bossa F; Santillo C; Verdolotti L; Campaner P; Minigher A; Boggioni L; Losio S; Coccia F; Iannace S; Lama GC
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals.
    Kong X; Zhao L; Curtis JM
    Carbohydr Polym; 2016 Nov; 152():487-495. PubMed ID: 27516296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams.
    Prociak A; Kucała M; Kurańska M; Barczewski M
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preventing the Collapse Behavior of Polyurethane Foams with the Addition of Cellulose Nanofiber.
    Ju S; Lee A; Shin Y; Jang H; Yi JW; Oh Y; Jo NJ; Park T
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams.
    Andersons J; Kirpluks M; Cabulis U
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol.
    Kosmela P; Hejna A; Suchorzewski J; Piszczyk Ł; Haponiuk JT
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites.
    Cordero AI; Amalvy JI; Fortunati E; Kenny JM; Chiacchiarelli LM
    Carbohydr Polym; 2015 Dec; 134():110-8. PubMed ID: 26428106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial Properties.
    Członka S; Strąkowska A; Strzelec K; Kairytė A; Kremensas A
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32131392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams.
    Członka S; Strąkowska A; Kairytė A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Characterization and Mechanical Properties of Novel Bio-Based Polyurethane Foams Using Cellulose-Derived Polyol for Chain Extension and Cellulose Citrate as a Thickener Additive.
    Maiuolo L; Olivito F; Algieri V; Costanzo P; Jiritano A; Tallarida MA; Tursi A; Sposato C; Feo A; De Nino A
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams.
    Paciorek-Sadowska J; Borowicz M; Isbrandt M
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyurethane foams from vegetable oil-based polyols: a review.
    Kaikade DS; Sabnis AS
    Polym Bull (Berl); 2023; 80(3):2239-2261. PubMed ID: 35310173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.