BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34372193)

  • 1. Integration of a Dielectrophoretic Tapered Aluminum Microelectrode Array with a Flow Focusing Technique.
    Rashid NFA; Deivasigamani R; Wee MFMR; Hamzah AA; Buyong MR
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation.
    Zhang Z; Luo Y; Nie X; Yu D; Xing X
    Analyst; 2020 Aug; 145(16):5603-5614. PubMed ID: 32776070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous dielectrophoretic particle separation via isomotive dielectrophoresis with bifurcating stagnation flow.
    Shkolnikov V; Xin D; Chen CH
    Electrophoresis; 2019 Nov; 40(22):2988-2995. PubMed ID: 31538669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels.
    Bányai A; Tóth EL; Varga M; Fürjes P
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration Study of Dielectrophoretically Manipulated Red Blood Cells in Tapered Aluminium Microelectrode Array: A Pilot Study.
    Samad MIA; Ponnuthurai DR; Badrudin SI; Ali MAM; Razak MAA; Buyong MR; Latif R
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoresis Manipulation: Versatile Lateral and Vertical Mechanisms.
    Buyong MR; Kayani AA; Hamzah AA; Yeop Majlis B
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30813614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation.
    Buyong MR; Larki F; Faiz MS; Hamzah AA; Yunas J; Majlis BY
    Sensors (Basel); 2015 May; 15(5):10973-90. PubMed ID: 25970255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids.
    Bentor J; Malekanfard A; Raihan MK; Wu S; Pan X; Song Y; Xuan X
    Electrophoresis; 2021 Nov; 42(21-22):2154-2161. PubMed ID: 33938011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip microfluidic buffer swap of biological samples in-line with downstream dielectrophoresis.
    Huang X; Torres-Castro K; Varhue W; Rane A; Rasin A; Swami NS
    Electrophoresis; 2022 Jun; 43(12):1275-1282. PubMed ID: 35286736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-Field-Assisted Dielectrophoretic Microchips for High-Efficiency Sheathless Particle/Cell Separation with Dual Mode.
    Shen S; Yi Z; Li X; Xie S; Jin M; Zhou G; Yan Z; Shui L
    Anal Chem; 2021 Jun; 93(21):7606-7615. PubMed ID: 34003009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Deformation and Migration Properties of U87 Glioma Cells Using Dielectrophoretic Forces.
    Elitas M; Islam M; Korvink JG; Sengul E; Sharbati P; Ozogul B; Kaymaz SV
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography.
    Nasabi M; Khoshmanesh K; Tovar-Lopez FJ; Kalantar-Zadeh K; Mitchell A
    Electrophoresis; 2013 Dec; 34(22-23):3150-4. PubMed ID: 24347270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoretic separation/classification/focusing of microparticles using electrified lab-on-a-disc platforms.
    Kordzadeh-Kermani V; Ashrafizadeh SN; Madadelahi M
    Anal Chim Acta; 2024 Jun; 1310():342719. PubMed ID: 38811136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.