These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34372256)

  • 1. Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs.
    Chen YJ; Chen PC; Chen SC; Wu CM
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Task Learning-Based Deep Neural Network for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces.
    Chuang CC; Lee CC; So EC; Yeng CH; Chen YJ
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale noise transfer and feature frequency detection in SSVEP based on FitzHugh-Nagumo neuron system.
    Chen R; Xu G; Zhang X; Han C; Zhang S
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34592716
    [No Abstract]   [Full Text] [Related]  

  • 7. To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs.
    Zerafa R; Camilleri T; Falzon O; Camilleri KP
    J Neural Eng; 2018 Oct; 15(5):051001. PubMed ID: 29869996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals.
    Yang D; Nguyen TH; Chung WY
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.
    Brumberg JS; Nguyen A; Pitt KM; Lorenz SD
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical feature fusion framework for frequency recognition in SSVEP-based BCIs.
    Zhang Y; Yin E; Li F; Zhang Y; Guo D; Yao D; Xu P
    Neural Netw; 2019 Nov; 119():1-9. PubMed ID: 31376634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing a left and right visual field biphasic stimulation paradigm for SSVEP-based BCIs with hairless region behind the ear.
    Liang L; Bin G; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34875637
    [No Abstract]   [Full Text] [Related]  

  • 14. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Steady-State Visual Evoked Potential (SSVEP) with LCD vs. LED Stimulation.
    Mu J; Grayden DB; Tan Y; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2946-2949. PubMed ID: 33018624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-Based BCIs.
    Bian R; Wu H; Liu B; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():446-455. PubMed ID: 36455079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5271-4. PubMed ID: 24110925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network.
    Deng Y; Sun Q; Wang C; Wang Y; Zhou SK
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806
    [No Abstract]   [Full Text] [Related]  

  • 19. Alpha neurofeedback training improves SSVEP-based BCI performance.
    Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A
    J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.
    Cotrina A; Benevides A; Ferreira A; Bastos T; Castillo J; Menezes ML; Pereira C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1342-5. PubMed ID: 25570215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.