These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34372282)

  • 1. Fast Sensing of Hydrogen Cyanide (HCN) Vapors Using a Hand-Held Ion Mobility Spectrometer with Nonradioactive Ionization Source.
    Bocos-Bintintan V; Ratiu IA
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry.
    Bocos-Bintintan V; Ratiu IA
    Toxics; 2020 Dec; 8(4):. PubMed ID: 33327618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing Precursors of Illegal Drugs-Rapid Detection of Acetic Anhydride Vapors at Trace Levels Using Photoionization Detection and Ion Mobility Spectrometry.
    Bocos-Bintintan V; Ghira GB; Anton M; Martiniuc AV; Ratiu IA
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Volatile Toxic Industrial Chemicals with Classical Ion Mobility Spectrometry and High-Kinetic Energy Ion Mobility Spectrometry.
    Allers M; Schaefer C; Ahrens A; Schlottmann F; Hitzemann M; Kobelt T; Zimmermann S; Hetzer R
    Anal Chem; 2022 Jan; 94(2):1211-1220. PubMed ID: 34963287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Ion Mobility Spectrometry with Novel Atmospheric Electron Emission Ionization for Field Detection of Gaseous and Blister Chemical Warfare Agents.
    Seto Y; Hashimoto R; Taniguchi T; Ohrui Y; Nagoya T; Iwamatsu T; Komaru S; Usui D; Morimoto S; Sakamoto Y; Ishizaki A; Nishide T; Inoue Y; Sugiyama H; Nakano N
    Anal Chem; 2019 Apr; 91(8):5403-5414. PubMed ID: 30920801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization.
    Ahrens A; Allers M; Bock H; Hitzemann M; Ficks A; Zimmermann S
    Anal Chem; 2022 Nov; 94(44):15440-15447. PubMed ID: 36301910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly selective and sensitive online measurement of trace exhaled HCN by acetone-assisted negative photoionization time-of-flight mass spectrometry with in-source CID.
    Xie Y; Li Q; Hua L; Chen P; Hu F; Wan N; Li H
    Anal Chim Acta; 2020 May; 1111():31-39. PubMed ID: 32312394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry.
    Bohnhorst A; Kirk AT; Berger M; Zimmermann S
    Anal Chem; 2018 Jan; 90(2):1114-1121. PubMed ID: 29271643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimisation of sorbent trapping and thermal desorption-gas chromatography-mass spectrometric conditions for sampling and analysis of hydrogen cyanide in air.
    Juillet Y; Le Moullec S; Bégos A; Bellier B
    Analyst; 2005 Jun; 130(6):977-82. PubMed ID: 15912249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast quantification of whisky lactone in oak wood by ion mobility spectrometer.
    Michalczuk B; Sabo M; Jatzová K; Moravský L; Gregorová M; Matejčík Š
    Talanta; 2020 Mar; 209():120567. PubMed ID: 31892077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer.
    Kidera M; Seto Y; Takahashi K; Enomoto S; Kishi S; Makita M; Nagamatsu T; Tanaka T; Toda M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1215-9. PubMed ID: 21242103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of Henry's law constant for hydrogen cyanide. Generation of trace standard gaseous hydrogen cyanide.
    Ma J; Dasgupta PK; Blackledge W; Boss GR
    Environ Sci Technol; 2010 Apr; 44(8):3028-34. PubMed ID: 20302333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.
    Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y
    Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Washout kinetics of inhaled hydrogen cyanide in breath.
    Stamyr K; Nord P; Johanson G
    Toxicol Lett; 2008 Jun; 179(1):59-62. PubMed ID: 18490114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of the phosgene response of a membrane inlet 63Ni ion mobility spectrometer.
    Bocos-Bintintan V; Brittain A; Thomas CL
    Analyst; 2002 Sep; 127(9):1211-7. PubMed ID: 12375846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents.
    Zimmermann S; Barth S; Baether WK; Ringer J
    Anal Chem; 2008 Sep; 80(17):6671-6. PubMed ID: 18665610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.
    Seto Y; Sekiguchi H; Maruko H; Yamashiro S; Sano Y; Takayama Y; Sekioka R; Yamaguchi S; Kishi S; Satoh T; Sekiguchi H; Iura K; Nagashima H; Nagoya T; Tsuge K; Ohsawa I; Okumura A; Takada Y; Ezawa N; Watanabe S; Hashimoto H
    Anal Chem; 2014 May; 86(9):4316-26. PubMed ID: 24678766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].
    Steiner WE; Harden CS; Hong F; Klopsch SJ; Hill HH; McHugh VM
    J Am Soc Mass Spectrom; 2006 Feb; 17(2):241-5. PubMed ID: 16413205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of hydrogen cyanide in air in a case of attempted cyanide poisoning.
    Magnusson R; Nyholm S; Åstot C
    Forensic Sci Int; 2012 Oct; 222(1-3):e7-e12. PubMed ID: 22704552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.