These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34372323)
1. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Durán AL; Franco EE; Reyna CAB; Pérez N; Tsuzuki MSG; Buiochi F Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372323 [TBL] [Abstract][Full Text] [Related]
2. Water content monitoring in water-in-oil emulsions using a delay line cell. Reyna CAB; Franco EE; Tsuzuki MSG; Buiochi F Ultrasonics; 2023 Sep; 134():107081. PubMed ID: 37413819 [TBL] [Abstract][Full Text] [Related]
3. Ultrasonic Monitoring of the Water Content in Concentrated Water-Petroleum Emulsions Using the Slope of the Phase Spectrum. Franco EE; Reyna CAB; Durán AL; Buiochi F Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236335 [TBL] [Abstract][Full Text] [Related]
4. Effect of ultrasonic homogenization on crude oil-water emulsion stability. Hassanshahi N; Hu G; Lee K; Li J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(3):211-221. PubMed ID: 36803402 [TBL] [Abstract][Full Text] [Related]
5. Applying ultrasonic fields to separate water contained in medium-gravity crude oil emulsions and determining crude oil adhesion coefficients. Sadatshojaie A; Wood DA; Jokar SM; Rahimpour MR Ultrason Sonochem; 2021 Jan; 70():105303. PubMed ID: 32781426 [TBL] [Abstract][Full Text] [Related]
6. Effect of ultrasonic frequency on separation of water from heavy crude oil emulsion using ultrasonic baths. Antes FG; Diehl LO; Pereira JS; Guimarães RC; Guarnieri RA; Ferreira BM; Flores EM Ultrason Sonochem; 2017 Mar; 35(Pt B):541-546. PubMed ID: 27085959 [TBL] [Abstract][Full Text] [Related]
8. Characterization of water-in-crude oil emulsions in oil spill response. Wei QF; Mather RR; Fotheringham AF; Yang RD J Environ Sci (China); 2003 Jul; 15(4):506-9. PubMed ID: 12974312 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of low frequency ultrasound for water removal from crude oil emulsions. Antes FG; Diehl LO; Pereira JS; Guimarães RC; Guarnieri RA; Ferreira BM; Dressler VL; Flores EM Ultrason Sonochem; 2015 Jul; 25():70-5. PubMed ID: 25640680 [TBL] [Abstract][Full Text] [Related]
10. Quality by design: characterization of self-nano-emulsified drug delivery systems (SNEDDs) using ultrasonic resonator technology. Shah RB; Zidan AS; Funck T; Tawakkul MA; Nguyenpho A; Khan MA Int J Pharm; 2007 Aug; 341(1-2):189-94. PubMed ID: 17521836 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound-assisted desalination of crude oil: The influence of mixing extent, crude oil species, chemical demulsifier and operation variables. Chen WS; Chen ZY; Chang JY; Chen CY; Zeng YP Ultrason Sonochem; 2022 Feb; 83():105947. PubMed ID: 35151193 [TBL] [Abstract][Full Text] [Related]
12. Research on ultrasound-assisted demulsification/dehydration for crude oil. Xu X; Cao D; Liu J; Gao J; Wang X Ultrason Sonochem; 2019 Oct; 57():185-192. PubMed ID: 31208613 [TBL] [Abstract][Full Text] [Related]
13. A model for the weathering of Colombian crude oils in the Colombian Caribbean Sea. Ramírez J; Merlano A; Lacayo J; Osorio AF; Molina A Mar Pollut Bull; 2017 Dec; 125(1-2):367-377. PubMed ID: 28965922 [TBL] [Abstract][Full Text] [Related]
14. Damping of surface waves due to crude oil/oil emulsion films on water. Sergievskaya I; Ermakov S; Lazareva T; Guo J Mar Pollut Bull; 2019 Sep; 146():206-214. PubMed ID: 31426148 [TBL] [Abstract][Full Text] [Related]
15. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification. Tang SY; Sivakumar M; Nashiru B Colloids Surf B Biointerfaces; 2013 Feb; 102():653-8. PubMed ID: 23107943 [TBL] [Abstract][Full Text] [Related]
16. Distributions of diluted bitumen and conventional crude oil in a range of water types. Hounjet LJ; Stoyanov SR; Chao D Chemosphere; 2018 Nov; 211():1212-1218. PubMed ID: 30223337 [TBL] [Abstract][Full Text] [Related]
17. Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Long X; Zhang G; Shen C; Sun G; Wang R; Yin L; Meng Q Bioresour Technol; 2013 Mar; 131():1-5. PubMed ID: 23321664 [TBL] [Abstract][Full Text] [Related]
18. Development of airborne oil thickness measurements. Brown CE; Fingas MF Mar Pollut Bull; 2003; 47(9-12):485-92. PubMed ID: 12899892 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Ismail AI; Atta AM; El-Newehy M; El-Hefnawy ME Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32498350 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic assisted water-in-oil emulsions encapsulating macro-molecular polysaccharide chitosan: Influence of molecular properties, emulsion viscosity and their stability. Zhang K; Mao Z; Huang Y; Xu Y; Huang C; Guo Y; Ren X; Liu C Ultrason Sonochem; 2020 Jun; 64():105018. PubMed ID: 32070902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]