These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34372326)
1. Development of an Easy-to-Operate Underwater Raman System for Deep-Sea Cold Seep and Hydrothermal Vent In Situ Detection. Liu Q; Guo J; Ye W; Cheng K; Qi F; Zheng R; Sun Z; Zhang X Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372326 [TBL] [Abstract][Full Text] [Related]
2. In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300 ℃ and 30 MPa. Li L; Du Z; Zhang X; Xi S; Wang B; Luan Z; Lian C; Yan J Appl Spectrosc; 2018 Jan; 72(1):48-59. PubMed ID: 28691855 [TBL] [Abstract][Full Text] [Related]
3. Depth Profiling Investigation of Seawater Using Combined Multi-Optical Spectrometry. Ye W; Guo J; Li N; Qi F; Cheng K; Zheng R Appl Spectrosc; 2020 May; 74(5):563-570. PubMed ID: 32031011 [TBL] [Abstract][Full Text] [Related]
4. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
5. Development of an in situ fiber optic Raman system to monitor hydrothermal vents. Battaglia TM; Dunn EE; Lilley MD; Holloway J; Dable BK; Marquardt BJ; Booksh KS Analyst; 2004 Jul; 129(7):602-6. PubMed ID: 15213826 [TBL] [Abstract][Full Text] [Related]
6. Development of a compact deep-sea Raman spectroscopy system and direct bicarbonate detection in sea trials. Guo J; Ye W; Liu Q; Qi F; Cheng K; Yang D; Zheng R Appl Opt; 2019 Apr; 58(10):2630-2634. PubMed ID: 31045063 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps. Cheng J; Hui M; Sha Z BMC Genomics; 2019 May; 20(1):388. PubMed ID: 31103028 [TBL] [Abstract][Full Text] [Related]
8. Metal adaptation strategies of deep-sea Bathymodiolus mussels from a cold seep and three hydrothermal vents in the West Pacific. Zhou L; Cao L; Wang X; Wang M; Wang H; Zhong Z; Xu Z; Chen H; Li L; Li M; Wang H; Zhang H; Lian C; Sun Y; Li C Sci Total Environ; 2020 Mar; 707():136046. PubMed ID: 31863974 [TBL] [Abstract][Full Text] [Related]
9. Development of a compact underwater laser-induced breakdown spectroscopy (LIBS) system and preliminary results in sea trials. Guo J; Lu Y; Cheng K; Song J; Ye W; Li N; Zheng R Appl Opt; 2017 Oct; 56(29):8196-8200. PubMed ID: 29047684 [TBL] [Abstract][Full Text] [Related]
10. A molecular gut content study of Themisto abyssorum (Amphipoda) from Arctic hydrothermal vent and cold seep systems. Olsen BR; Troedsson C; Hadziavdic K; Pedersen RB; Rapp HT Mol Ecol; 2014 Aug; 23(15):3877-89. PubMed ID: 24172025 [TBL] [Abstract][Full Text] [Related]
11. Hidden Historical Habitat-Linked Population Divergence and Contemporary Gene Flow of a Deep-Sea Patellogastropod Limpet. Xu T; Wang Y; Sun J; Chen C; Watanabe HK; Chen J; Qian PY; Qiu JW Mol Biol Evol; 2021 Dec; 38(12):5640-5654. PubMed ID: 34534352 [TBL] [Abstract][Full Text] [Related]
12. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
13. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure. Barros I; Divya B; Martins I; Vandeperre F; Santos RS; Bettencourt R Fish Shellfish Immunol; 2015 Jan; 42(1):159-70. PubMed ID: 25462464 [TBL] [Abstract][Full Text] [Related]
14. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Cerqueira T; Pinho D; Egas C; Froufe H; Altermark B; Candeias C; Santos RS; Bettencourt R Mar Genomics; 2015 Dec; 24 Pt 3():343-55. PubMed ID: 26375668 [TBL] [Abstract][Full Text] [Related]
15. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. Dang H; Luan XW; Chen R; Zhang X; Guo L; Klotz MG FEMS Microbiol Ecol; 2010 Jun; 72(3):370-85. PubMed ID: 20402778 [TBL] [Abstract][Full Text] [Related]
16. In-situ Raman study on kinetics behaviors of hydrated bubble in thickening. Zeng XY; Wu G; Zhang S; Sun L; Sun C; Chen G; Zhong J; Li P; Yang Z; Feng JC Sci Total Environ; 2022 Mar; 814():152476. PubMed ID: 34952051 [TBL] [Abstract][Full Text] [Related]
17. Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy. Li M; Liu Q; Yang D; Guo J; Si G; Wu L; Zheng R Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300571 [TBL] [Abstract][Full Text] [Related]
18. Development and Field Tests of a Deep-Sea Laser-Induced Breakdown Spectroscopy (LIBS) System for Solid Sample Analysis in Seawater. Liu C; Guo J; Tian Y; Zhang C; Cheng K; Ye W; Zheng R Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371290 [TBL] [Abstract][Full Text] [Related]
19. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria. Shao S; Luan X; Dang H; Zhou H; Zhao Y; Liu H; Zhang Y; Dai L; Ye Y; Klotz MG FEMS Microbiol Ecol; 2014 Feb; 87(2):503-16. PubMed ID: 24164560 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. He T; Zhang X Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]