BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34372758)

  • 1. CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis.
    Xu Y; McCord RP
    BMC Bioinformatics; 2021 Aug; 22(1):397. PubMed ID: 34372758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network.
    Hu J; Li X; Coleman K; Schroeder A; Ma N; Irwin DJ; Lee EB; Shinohara RT; Li M
    Nat Methods; 2021 Nov; 18(11):1342-1351. PubMed ID: 34711970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network.
    Li X; Huang W; Xu X; Zhang HY; Shi Q
    Front Genet; 2023; 14():1202409. PubMed ID: 37303949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network.
    Song T; Markham KK; Li Z; Muller KE; Greenham K; Kuang R
    Bioinformatics; 2022 Feb; 38(5):1344-1352. PubMed ID: 34864909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial transcriptomics prediction from histology jointly through Transformer and graph neural networks.
    Zeng Y; Wei Z; Yu W; Yin R; Yuan Y; Li B; Tang Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics.
    Liu T; Fang ZY; Zhang Z; Yu Y; Li M; Yin MZ
    Comput Struct Biotechnol J; 2024 Dec; 23():106-128. PubMed ID: 38089467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study.
    Fatemi M; Feng E; Sharma C; Azher Z; Goel T; Ramwala O; Palisoul SM; Barney RE; Perreard L; Kolling FW; Salas LA; Christensen BC; Tsongalis GJ; Vaickus LJ; Levy JJ
    J Pathol Inform; 2023; 14():100308. PubMed ID: 37114077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iIMPACT: integrating image and molecular profiles for spatial transcriptomics analysis.
    Jiang X; Wang S; Guo L; Zhu B; Wen Z; Jia L; Xu L; Xiao G; Li Q
    Genome Biol; 2024 Jun; 25(1):147. PubMed ID: 38844966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images.
    Shaban M; Awan R; Fraz MM; Azam A; Tsang YW; Snead D; Rajpoot NM
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2395-2405. PubMed ID: 32012004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell clustering for spatial transcriptomics data with graph neural networks.
    Li J; Chen S; Pan X; Yuan Y; Shen HB
    Nat Comput Sci; 2022 Jun; 2(6):399-408. PubMed ID: 38177586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning.
    Chang Y; He F; Wang J; Chen S; Li J; Liu J; Yu Y; Su L; Ma A; Allen C; Lin Y; Sun S; Liu B; Javier Otero J; Chung D; Fu H; Li Z; Xu D; Ma Q
    Comput Struct Biotechnol J; 2022; 20():4600-4617. PubMed ID: 36090815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics.
    Fang Z; Liu T; Zheng R; A J; Yin M; Li M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpatialCPie: an R/Bioconductor package for spatial transcriptomics cluster evaluation.
    Bergenstråhle J; Bergenstråhle L; Lundeberg J
    BMC Bioinformatics; 2020 Apr; 21(1):161. PubMed ID: 32349652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph deep learning enabled spatial domains identification for spatial transcriptomics.
    Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.