BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 34372758)

  • 21. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data.
    Chakrabarti A; Ni Y; Mallick BK
    Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics.
    Li Z; Chen X; Zhang X; Jiang R; Chen S
    Genome Res; 2023 Oct; 33(10):1757-1773. PubMed ID: 37903634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MI-EEGNET: A novel convolutional neural network for motor imagery classification.
    Riyad M; Khalil M; Adib A
    J Neurosci Methods; 2021 Apr; 353():109037. PubMed ID: 33338542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attention-guided variational graph autoencoders reveal heterogeneity in spatial transcriptomics.
    Lei L; Han K; Wang Z; Shi C; Wang Z; Dai R; Zhang Z; Wang M; Guo Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38627939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles.
    Matsubara T; Ochiai T; Hayashida M; Akutsu T; Nacher JC
    J Bioinform Comput Biol; 2019 Jun; 17(3):1940007. PubMed ID: 31288636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder.
    Dong K; Zhang S
    Nat Commun; 2022 Apr; 13(1):1739. PubMed ID: 35365632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain.
    Grisanti Canozo FJ; Zuo Z; Martin JF; Samee MAH
    Cell Syst; 2022 Jan; 13(1):58-70.e5. PubMed ID: 34626538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DIST: spatial transcriptomics enhancement using deep learning.
    Zhao Y; Wang K; Hu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Overlooked Role of Specimen Preparation in Bolstering Deep Learning-Enhanced Spatial Transcriptomics Workflows.
    Fatemi MY; Lu Y; Diallo AB; Srinivasan G; Azher ZL; Christensen BC; Salas LA; Tsongalis GJ; Palisoul SM; Perreard L; Kolling FW; Vaickus LJ; Levy JJ
    medRxiv; 2023 Oct; ():. PubMed ID: 37873287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data.
    Yuan Y; Bar-Joseph Z
    Genome Biol; 2020 Dec; 21(1):300. PubMed ID: 33303016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Identifying spatial domains from spatial transcriptome by graph attention network].
    Wu H; Gao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):246-252. PubMed ID: 38686404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of deep convolutional neural networks for in situ hybridization gene expression image representation.
    Abed-Esfahani P; Darwin BC; Howard D; Wang N; Kim E; Lerch J; French L
    PLoS One; 2022; 17(1):e0262717. PubMed ID: 35073334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCS: cell segmentation for high-resolution spatial transcriptomics.
    Chen H; Li D; Bar-Joseph Z
    Nat Methods; 2023 Aug; 20(8):1237-1243. PubMed ID: 37429992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stardust: improving spatial transcriptomics data analysis through space-aware modularity optimization-based clustering.
    Avesani S; Viesi E; Alessandrì L; Motterle G; Bonnici V; Beccuti M; Calogero R; Giugno R
    Gigascience; 2022 Aug; 11():. PubMed ID: 35946989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A noise-robust deep clustering of biomolecular ions improves interpretability of mass spectrometric images.
    Guo D; Föll MC; Bemis KA; Vitek O
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.
    Long Y; Ang KS; Li M; Chong KLK; Sethi R; Zhong C; Xu H; Ong Z; Sachaphibulkij K; Chen A; Zeng L; Fu H; Wu M; Lim LHK; Liu L; Chen J
    Nat Commun; 2023 Mar; 14(1):1155. PubMed ID: 36859400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.
    Zeng T; Li R; Mukkamala R; Ye J; Ji S
    BMC Bioinformatics; 2015 May; 16():147. PubMed ID: 25948335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics.
    Liang Y; Shi G; Cai R; Yuan Y; Xie Z; Yu L; Huang Y; Shi Q; Wang L; Li J; Tang Z
    Nat Commun; 2024 Jan; 15(1):600. PubMed ID: 38238417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics.
    Li J; Wang J; Lin Z
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38171928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.