BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 34372758)

  • 41. Feasibility of Image Registration for Ultrasound-Guided Prostate Radiotherapy Based on Similarity Measurement by a Convolutional Neural Network.
    Zhu N; Najafi M; Han B; Hancock S; Hristov D
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818821964. PubMed ID: 30803364
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks.
    Antonio VAA; Ono N; Saito A; Sato T; Altaf-Ul-Amin M; Kanaya S
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1905-1913. PubMed ID: 30159833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facetto: Combining Unsupervised and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel Image Data.
    Krueger R; Beyer J; Jang WD; Kim NW; Sokolov A; Sorger PK; Pfister H
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):227-237. PubMed ID: 31514138
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics.
    Shan Y; Zhang Q; Guo W; Wu Y; Miao Y; Xin H; Lian Q; Gu J
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):974-988. PubMed ID: 36549467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.
    Dey-Rao R; Sinha AA
    BMC Genomics; 2017 Jan; 18(1):109. PubMed ID: 28129744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning.
    Zhang C; Dong K; Aihara K; Chen L; Zhang S
    Nucleic Acids Res; 2023 Nov; 51(20):e103. PubMed ID: 37811885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network.
    Cang Z; Ning X; Nie A; Xu M; Zhang J
    BMVC; 2021 Nov; 32():. PubMed ID: 36227018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer.
    Chelebian E; Avenel C; Kartasalo K; Marklund M; Tanoglidi A; Mirtti T; Colling R; Erickson A; Lamb AD; Lundeberg J; Wählby C
    Cancers (Basel); 2021 Sep; 13(19):. PubMed ID: 34638322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fusion transcript detection using spatial transcriptomics.
    Friedrich S; Sonnhammer ELL
    BMC Med Genomics; 2020 Aug; 13(1):110. PubMed ID: 32753032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PAUSE: principled feature attribution for unsupervised gene expression analysis.
    Janizek JD; Spiro A; Celik S; Blue BW; Russell JC; Lee TI; Kaeberlin M; Lee SI
    Genome Biol; 2023 Apr; 24(1):81. PubMed ID: 37076856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SOPHIE: Generative Neural Networks Separate Common and Specific Transcriptional Responses.
    Lee AJ; Mould DL; Crawford J; Hu D; Powers RK; Doing G; Costello JC; Hogan DA; Greene CS
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):912-927. PubMed ID: 36216026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benchmarking spatial clustering methods with spatially resolved transcriptomics data.
    Yuan Z; Zhao F; Lin S; Zhao Y; Yao J; Cui Y; Zhang XY; Zhao Y
    Nat Methods; 2024 Apr; 21(4):712-722. PubMed ID: 38491270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-Taught convolutional neural networks for short text clustering.
    Xu J; Xu B; Wang P; Zheng S; Tian G; Zhao J; Xu B
    Neural Netw; 2017 Apr; 88():22-31. PubMed ID: 28157556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep multi-kernel auto-encoder network for clustering brain functional connectivity data.
    Lu H; Liu S; Wei H; Chen C; Geng X
    Neural Netw; 2021 Mar; 135():148-157. PubMed ID: 33388506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network.
    Ikemoto H; Yamamoto K; Touyama H; Yamashita D; Nakamura M; Okuda H
    J Synchrotron Radiat; 2020 Jul; 27(Pt 4):1069-1073. PubMed ID: 33566017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.