BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34372758)

  • 81. Insights and approaches using deep learning to classify wildlife.
    Miao Z; Gaynor KM; Wang J; Liu Z; Muellerklein O; Norouzzadeh MS; McInturff A; Bowie RCK; Nathan R; Yu SX; Getz WM
    Sci Rep; 2019 May; 9(1):8137. PubMed ID: 31148564
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Feasibility of Inferring Spatial Transcriptomics from Single-Cell Histological Patterns for Studying Colon Cancer Tumor Heterogeneity.
    Fatemi MY; Lu Y; Sharma C; Feng E; Azher ZL; Diallo AB; Srinivasan G; Rosner GM; Pointer KB; Christensen BC; Salas LA; Tsongalis GJ; Palisoul SM; Perreard L; Kolling FW; Vaickus LJ; Levy JJ
    medRxiv; 2023 Oct; ():. PubMed ID: 37873186
    [TBL] [Abstract][Full Text] [Related]  

  • 83. EEG-based mild depression recognition using convolutional neural network.
    Li X; La R; Wang Y; Niu J; Zeng S; Sun S; Zhu J
    Med Biol Eng Comput; 2019 Jun; 57(6):1341-1352. PubMed ID: 30778842
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Meibography Phenotyping and Classification From Unsupervised Discriminative Feature Learning.
    Yeh CH; Yu SX; Lin MC
    Transl Vis Sci Technol; 2021 Feb; 10(2):4. PubMed ID: 34003889
    [TBL] [Abstract][Full Text] [Related]  

  • 86. SORBET: Automated cell-neighborhood analysis of spatial transcriptomics or proteomics for interpretable sample classification via GNN.
    Shimonov S; Cunningham JM; Talmon R; Aizenbud L; Desai SJ; Rimm D; Schalper K; Kluger H; Kluger Y
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260586
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Automated ECG classification using a non-local convolutional block attention module.
    Wang J; Qiao X; Liu C; Wang X; Liu Y; Yao L; Zhang H
    Comput Methods Programs Biomed; 2021 May; 203():106006. PubMed ID: 33735660
    [TBL] [Abstract][Full Text] [Related]  

  • 88. SpotClean adjusts for spot swapping in spatial transcriptomics data.
    Ni Z; Prasad A; Chen S; Halberg RB; Arkin LM; Drolet BA; Newton MA; Kendziorski C
    Nat Commun; 2022 May; 13(1):2971. PubMed ID: 35624112
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification.
    Li S; Zhu X; Bao J
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974816
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning.
    Rahaman MM; Millar EKA; Meijering E
    Sci Rep; 2023 Aug; 13(1):13604. PubMed ID: 37604916
    [TBL] [Abstract][Full Text] [Related]  

  • 91. DeepST: identifying spatial domains in spatial transcriptomics by deep learning.
    Xu C; Jin X; Wei S; Wang P; Luo M; Xu Z; Yang W; Cai Y; Xiao L; Lin X; Liu H; Cheng R; Pang F; Chen R; Su X; Hu Y; Wang G; Jiang Q
    Nucleic Acids Res; 2022 Dec; 50(22):e131. PubMed ID: 36250636
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Mapping and Discriminating Rural Settlements Using Gaofen-2 Images and a Fully Convolutional Network.
    Ye Z; Si B; Lin Y; Zheng Q; Zhou R; Huang L; Wang K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113788
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Identification of expression patterns in the progression of disease stages by integration of transcriptomic data.
    Aibar S; Abaigar M; Campos-Laborie FJ; Sánchez-Santos JM; Hernandez-Rivas JM; De Las Rivas J
    BMC Bioinformatics; 2016 Nov; 17(Suppl 15):432. PubMed ID: 28185568
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sampling and ranking spatial transcriptomics data embeddings to identify tissue architecture.
    Lin Y; Wang Y; Liang Y; Yu Y; Li J; Ma Q; He F; Xu D
    Front Genet; 2022; 13():912813. PubMed ID: 36035139
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A deep learning based method for large-scale classification, registration, and clustering of in-situ hybridization experiments in the mouse olfactory bulb.
    Andonian A; Paseltiner D; Gould TJ; Castro JB
    J Neurosci Methods; 2019 Jan; 312():162-168. PubMed ID: 30529409
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Unsupervised and supervised learning with neural network for human transcriptome analysis and cancer diagnosis.
    Yuan B; Yang D; Rothberg BEG; Chang H; Xu T
    Sci Rep; 2020 Nov; 10(1):19106. PubMed ID: 33154423
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI.
    Wang Z; Xie L; Qi J
    Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Identification and transfer of spatial transcriptomics signatures for cancer diagnosis.
    Yoosuf N; Navarro JF; Salmén F; Ståhl PL; Daub CO
    Breast Cancer Res; 2020 Jan; 22(1):6. PubMed ID: 31931856
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets.
    Figueroa-Mata G; Mata-Montero E
    Biomimetics (Basel); 2020 Mar; 5(1):. PubMed ID: 32121572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.