These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 34372777)
1. Identifying potential association on gene-disease network via dual hypergraph regularized least squares. Yang H; Ding Y; Tang J; Guo F BMC Genomics; 2021 Aug; 22(1):605. PubMed ID: 34372777 [TBL] [Abstract][Full Text] [Related]
2. Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares. Wang W; Chen H Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849099 [TBL] [Abstract][Full Text] [Related]
3. Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Wang H; Tang J; Ding Y; Guo F Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33443536 [TBL] [Abstract][Full Text] [Related]
4. L2-norm multiple kernel learning and its application to biomedical data fusion. Yu S; Falck T; Daemen A; Tranchevent LC; Suykens JA; De Moor B; Moreau Y BMC Bioinformatics; 2010 Jun; 11():309. PubMed ID: 20529363 [TBL] [Abstract][Full Text] [Related]
5. FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association. Jiang L; Xiao Y; Ding Y; Tang J; Guo F BMC Genomics; 2018 Dec; 19(Suppl 10):911. PubMed ID: 30598109 [TBL] [Abstract][Full Text] [Related]
6. Identification of human microRNA-disease association via hypergraph embedded bipartite local model. Ding Y; Jiang L; Tang J; Guo F Comput Biol Chem; 2020 Dec; 89():107369. PubMed ID: 33099120 [TBL] [Abstract][Full Text] [Related]
7. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities. Xu D; Xu H; Zhang Y; Wang M; Chen W; Gao R J Transl Med; 2021 Feb; 19(1):66. PubMed ID: 33579301 [TBL] [Abstract][Full Text] [Related]
8. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources. Nascimento ACA; PrudĂȘncio RBC; Costa IG Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449 [TBL] [Abstract][Full Text] [Related]
9. MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction. Chen X; Niu YW; Wang GH; Yan GY J Transl Med; 2017 Dec; 15(1):251. PubMed ID: 29233191 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Virus-Receptor Interactions Based on Improving Similarities. Zhu L; Yan C; Duan G J Comput Biol; 2021 Jul; 28(7):650-659. PubMed ID: 33481654 [TBL] [Abstract][Full Text] [Related]
11. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning. Ding Y; Tang J; Guo F IEEE J Biomed Health Inform; 2019 Nov; 23(6):2619-2632. PubMed ID: 30507518 [TBL] [Abstract][Full Text] [Related]
12. Completing sparse and disconnected protein-protein network by deep learning. Huang L; Liao L; Wu CH BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671 [TBL] [Abstract][Full Text] [Related]
13. A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network. Zheng Y; Wu Z ACS Omega; 2021 Feb; 6(4):3037-3045. PubMed ID: 33553921 [TBL] [Abstract][Full Text] [Related]
14. MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association. Jiang L; Ding Y; Tang J; Guo F Front Genet; 2018; 9():618. PubMed ID: 30619454 [TBL] [Abstract][Full Text] [Related]
15. Kinase Identification with Supervised Laplacian Regularized Least Squares. Li A; Xu X; Zhang H; Wang M PLoS One; 2015; 10(10):e0139676. PubMed ID: 26448296 [TBL] [Abstract][Full Text] [Related]
16. MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features. Wang YT; Wu QW; Gao Z; Ni JC; Zheng CH BMC Med Inform Decis Mak; 2021 Apr; 21(Suppl 1):133. PubMed ID: 33882934 [TBL] [Abstract][Full Text] [Related]
17. Predicting Potential Drug-Disease Associations Based on Hypergraph Learning with Subgraph Matching. Wang Y; Song J; Wei M; Duan X Interdiscip Sci; 2023 Jun; 15(2):249-261. PubMed ID: 36906712 [TBL] [Abstract][Full Text] [Related]
18. Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA-Disease Associations Based on Multi-Source Data. Li G; Wang D; Zhang Y; Liang C; Xiao Q; Luo J Front Genet; 2022; 13():829937. PubMed ID: 35198012 [TBL] [Abstract][Full Text] [Related]
19. LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe-Disease Association prediction. Wang F; Huang ZA; Chen X; Zhu Z; Wen Z; Zhao J; Yan GY Sci Rep; 2017 Aug; 7(1):7601. PubMed ID: 28790448 [TBL] [Abstract][Full Text] [Related]
20. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction. Wang W; Yu M; Sun B; Li J; Liu D; Zhang H; Wang X; Zhou Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):143-154. PubMed ID: 38051618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]