These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 34373457)
1. IceR improves proteome coverage and data completeness in global and single-cell proteomics. Kalxdorf M; Müller T; Stegle O; Krijgsveld J Nat Commun; 2021 Aug; 12(1):4787. PubMed ID: 34373457 [TBL] [Abstract][Full Text] [Related]
2. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820 [TBL] [Abstract][Full Text] [Related]
3. IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts. Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Poulsen DJ; Orsburn BC; Wang J; Qu J Proc Natl Acad Sci U S A; 2018 May; 115(21):E4767-E4776. PubMed ID: 29743190 [TBL] [Abstract][Full Text] [Related]
5. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time. Muntel J; Kirkpatrick J; Bruderer R; Huang T; Vitek O; Ori A; Reiter L J Proteome Res; 2019 Mar; 18(3):1340-1351. PubMed ID: 30726097 [TBL] [Abstract][Full Text] [Related]
7. Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference. Sandberg A; Branca RM; Lehtiö J; Forshed J J Proteomics; 2014 Jan; 96():133-44. PubMed ID: 24211767 [TBL] [Abstract][Full Text] [Related]
8. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry. Ku X; Yan W Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains. Tang J; Fu J; Wang Y; Luo Y; Yang Q; Li B; Tu G; Hong J; Cui X; Chen Y; Yao L; Xue W; Zhu F Mol Cell Proteomics; 2019 Aug; 18(8):1683-1699. PubMed ID: 31097671 [TBL] [Abstract][Full Text] [Related]
10. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay. Heaven MR; Funk AJ; Cobbs AL; Haffey WD; Norris JL; McCullumsmith RE; Greis KD J Mass Spectrom; 2016 Jan; 51(1):1-11. PubMed ID: 26757066 [TBL] [Abstract][Full Text] [Related]
11. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Distler U; Kuharev J; Navarro P; Tenzer S Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757 [TBL] [Abstract][Full Text] [Related]
12. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity. Ctortecka C; Hartlmayr D; Seth A; Mendjan S; Tourniaire G; Udeshi ND; Carr SA; Mechtler K Mol Cell Proteomics; 2023 Dec; 22(12):100665. PubMed ID: 37839701 [TBL] [Abstract][Full Text] [Related]
13. Block Design with Common Reference Samples Enables Robust Large-Scale Label-Free Quantitative Proteome Profiling. Zhang T; Gaffrey MJ; Monroe ME; Thomas DG; Weitz KK; Piehowski PD; Petyuk VA; Moore RJ; Thrall BD; Qian WJ J Proteome Res; 2020 Jul; 19(7):2863-2872. PubMed ID: 32407631 [TBL] [Abstract][Full Text] [Related]
14. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Chapman JD; Goodlett DR; Masselon CD Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846 [TBL] [Abstract][Full Text] [Related]
15. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis. Tebbe A; Klammer M; Sighart S; Schaab C; Daub H Rapid Commun Mass Spectrom; 2015 May; 29(9):795-801. PubMed ID: 26377007 [TBL] [Abstract][Full Text] [Related]
16. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification. Tu C; Shen S; Sheng Q; Shyr Y; Qu J J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464 [TBL] [Abstract][Full Text] [Related]
17. An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome. Fang H; Greening DW Methods Mol Biol; 2023; 2628():93-107. PubMed ID: 36781781 [TBL] [Abstract][Full Text] [Related]
18. Increasing the throughput of sensitive proteomics by plexDIA. Derks J; Leduc A; Wallmann G; Huffman RG; Willetts M; Khan S; Specht H; Ralser M; Demichev V; Slavov N Nat Biotechnol; 2023 Jan; 41(1):50-59. PubMed ID: 35835881 [TBL] [Abstract][Full Text] [Related]
19. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
20. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]