These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34373465)

  • 1. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics.
    Oftadeh O; Salvy P; Masid M; Curvat M; Miskovic L; Hatzimanikatis V
    Nat Commun; 2021 Aug; 12(1):4790. PubMed ID: 34373465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.
    Paklao T; Suratanee A; Plaimas K
    BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models.
    Salvy P; Hatzimanikatis V
    Nat Commun; 2020 Jan; 11(1):30. PubMed ID: 31937763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.
    Averesch NJH; Martínez VS; Nielsen LK; Krömer JO
    ACS Synth Biol; 2018 Feb; 7(2):490-509. PubMed ID: 29237121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically Shrinking the Solution Space of a Saccharomyces cerevisiae Genome-Scale Model Suggests the Role of the Metabolic Network in Shaping Gene Expression Noise.
    Chi B; Tao S; Liu Y
    PLoS One; 2015; 10(10):e0139590. PubMed ID: 26448560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico design of anaerobic growth-coupled product formation in Escherichia coli: experimental validation using a simple polyol, glycerol.
    Balagurunathan B; Jain VK; Tear CJ; Lim CY; Zhao H
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):361-372. PubMed ID: 27796571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 19. Emergence of Orchestrated and Dynamic Metabolism of
    Nguyen V; Li Y; Lu T
    ACS Synth Biol; 2024 May; 13(5):1442-1453. PubMed ID: 38657170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.