BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34373610)

  • 1. Deep learning-enabled ultra-widefield retinal vessel segmentation with an automated quality-optimized angiographic phase selection tool.
    Sevgi DD; Srivastava SK; Wykoff C; Scott AW; Hach J; O'Connell M; Whitney J; Vasanji A; Reese JL; Ehlers JP
    Eye (Lond); 2022 Sep; 36(9):1783-1788. PubMed ID: 34373610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation of ultra-widefield fluorescein angiography of diabetic retinopathy using deep learning.
    Lee PK; Ra H; Baek J
    Br J Ophthalmol; 2023 Nov; 107(12):1859-1863. PubMed ID: 36241374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal assessment of quantitative ultra-widefield ischaemic and vascular parameters in sickle cell retinopathy.
    Sevgi DD; Scott AW; Martin A; Mugnaini C; Patel S; Linz MO; Nti AA; Reese J; Ehlers JP
    Br J Ophthalmol; 2022 Feb; 106(2):251-255. PubMed ID: 33130554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Ultra-Widefield Angiographic Vascular Features in Diabetic Retinopathy with Automated Severity Classification.
    Sevgi DD; Srivastava SK; Whitney J; O'Connell M; Kar SS; Hu M; Reese J; Madabhushi A; Ehlers JP
    Ophthalmol Sci; 2021 Sep; 1(3):. PubMed ID: 35224527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Quality Assessment and Image Selection of Ultra-Widefield Fluorescein Angiography Images through Deep Learning.
    Li HH; Abraham JR; Sevgi DD; Srivastava SK; Hach JM; Whitney J; Vasanji A; Reese JL; Ehlers JP
    Transl Vis Sci Technol; 2020 Sep; 9(2):52. PubMed ID: 32995069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeatability of automated leakage quantification and microaneurysm identification utilising an analysis platform for ultra-widefield fluorescein angiography.
    Jiang A; Srivastava S; Figueiredo N; Babiuch A; Hu M; Reese J; Ehlers JP
    Br J Ophthalmol; 2020 Apr; 104(4):500-503. PubMed ID: 31320384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Grading of Diabetic Retinopathy with Ultra-Widefield Fluorescein Angiography and Deep Learning.
    Wang X; Ji Z; Ma X; Zhang Z; Yi Z; Zheng H; Fan W; Chen C
    J Diabetes Res; 2021; 2021():2611250. PubMed ID: 34541004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics-based assessment of ultra-widefield leakage patterns and vessel network architecture in the PERMEATE study: insights into treatment durability.
    Prasanna P; Bobba V; Figueiredo N; Sevgi DD; Lu C; Braman N; Alilou M; Sharma S; Srivastava SK; Madabhushi A; Ehlers JP
    Br J Ophthalmol; 2021 Aug; 105(8):1155-1160. PubMed ID: 32816791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Coherence Tomography Angiography and Ultra-widefield Fluorescein Angiography for Early Detection of Adolescent Sickle Retinopathy.
    Pahl DA; Green NS; Bhatia M; Lee MT; Chang JS; Licursi M; Briamonte C; Smilow E; Chen RWS
    Am J Ophthalmol; 2017 Nov; 183():91-98. PubMed ID: 28860042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography.
    Ehlers JP; Wang K; Vasanji A; Hu M; Srivastava SK
    Br J Ophthalmol; 2017 Jun; 101(6):696-699. PubMed ID: 28432113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fundus Photographs of Patients With Sickle Cell Hemoglobinopathy.
    Cai S; Parker F; Urias MG; Goldberg MF; Hager GD; Scott AW
    JAMA Ophthalmol; 2021 Feb; 139(2):206-213. PubMed ID: 33377944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Widefield Fluorescein Angiography Image Brightness Compensation Based on Geometrical Features.
    Więcławek W; Danch-Wierzchowska M; Rudzki M; Sędziak-Marcinek B; Teper SJ
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-wide-field fluorescein angiography in retinal disease.
    Patel M; Kiss S
    Curr Opin Ophthalmol; 2014 May; 25(3):213-20. PubMed ID: 24614144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Learning Algorithm for Classifying Diabetic Retinopathy Using Optical Coherence Tomography Angiography.
    Ryu G; Lee K; Park D; Kim I; Park SH; Sagong M
    Transl Vis Sci Technol; 2022 Feb; 11(2):39. PubMed ID: 35703566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different scan areas affect the detection rates of diabetic retinopathy lesions by high-speed ultra-widefield swept-source optical coherence tomography angiography.
    Li M; Mao M; Wei D; Liu M; Liu X; Leng H; Wang Y; Chen S; Zhang R; Zeng Y; Wang M; Li J; Zhong J
    Front Endocrinol (Lausanne); 2023; 14():1111360. PubMed ID: 36891051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based classification of retinal vascular diseases using ultra-widefield colour fundus photographs.
    Abitbol E; Miere A; Excoffier JB; Mehanna CJ; Amoroso F; Kerr S; Ortala M; Souied EH
    BMJ Open Ophthalmol; 2022; 7(1):e000924. PubMed ID: 35141420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction Between the Distribution of Diabetic Retinopathy Lesions and the Association of Optical Coherence Tomography Angiography Scans With Diabetic Retinopathy Severity.
    Ashraf M; Sampani K; Rageh A; Silva PS; Aiello LP; Sun JK
    JAMA Ophthalmol; 2020 Dec; 138(12):1291-1297. PubMed ID: 33119083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnosing Diabetic Retinopathy in OCTA Images Based on Multilevel Information Fusion Using a Deep Learning Framework.
    Li Q; Zhu XR; Sun G; Zhang L; Zhu M; Tian T; Guo C; Mazhar S; Yang JK; Li Y
    Comput Math Methods Med; 2022; 2022():4316507. PubMed ID: 35966243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Imaging Biomarker Correlation with Intraocular Cytokine Expression in Diabetic Macular Edema: Radiomics Insights from the IMAGINE Study.
    Kar SS; Abraham J; Wykoff CC; Sevgi DD; Lunasco L; Brown DM; Srivastava SK; Madabhushi A; Ehlers JP
    Ophthalmol Sci; 2022 Jun; 2(2):100123. PubMed ID: 36249694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.