These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34373889)

  • 21. Mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid.
    Chong SH; Götze W; Singh AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011206. PubMed ID: 11304245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tests of mode-coupling theory in two dimensions.
    Weysser F; Hajnal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041503. PubMed ID: 21599165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids.
    McCowan DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022107. PubMed ID: 26382344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic arrest and glass-glass transition in short-ranged attractive colloids.
    Sztucki M; Narayanan T; Belina G; Moussaïd A; Pignon F; Hoekstra H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051504. PubMed ID: 17279914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Percolation approach to glassy dynamics with continuously broken ergodicity.
    Arenzon JJ; Coniglio A; Fierro A; Sellitto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020301. PubMed ID: 25215672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glassy dynamics of a binary Voronoi fluid: a mode-coupling analysis.
    Ruscher C; Ciarella S; Luo C; Janssen LMC; Farago J; Baschnagel J
    J Phys Condens Matter; 2021 Feb; 33(6):064001. PubMed ID: 33105111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active glassy dynamics is unaffected by the microscopic details of self-propulsion.
    Debets VE; Janssen LMC
    J Chem Phys; 2022 Dec; 157(22):224902. PubMed ID: 36546821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glassy relaxation slows down by increasing mobility.
    Mandal S; Franosch T; Voigtmann T
    Soft Matter; 2018 Nov; 14(45):9153-9158. PubMed ID: 30421769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glassy Behavior of Sticky Spheres: What Lies beyond Experimental Timescales?
    Fullerton CJ; Berthier L
    Phys Rev Lett; 2020 Dec; 125(25):258004. PubMed ID: 33416397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dynamical crossover in attractive colloidal systems.
    Mallamace F; Corsaro C; Stanley HE; Mallamace D; Chen SH
    J Chem Phys; 2013 Dec; 139(21):214502. PubMed ID: 24320386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonergodicity transitions in colloidal suspensions with attractive interactions.
    Bergenholtz J; Fuchs M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5706-15. PubMed ID: 11969555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions.
    Chen WR; Mallamace F; Glinka CJ; Fratini E; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041402. PubMed ID: 14682940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unveiling the complex glassy dynamics of square shoulder systems: simulations and theory.
    Das G; Gnan N; Sciortino F; Zaccarelli E
    J Chem Phys; 2013 Apr; 138(13):134501. PubMed ID: 23574238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glassy dynamics in asymmetric binary mixtures of hard spheres.
    Lázaro-Lázaro E; Perera-Burgos JA; Laermann P; Sentjabrskaja T; Pérez-Ángel G; Laurati M; Egelhaaf SU; Medina-Noyola M; Voigtmann T; Castañeda-Priego R; Elizondo-Aguilera LF
    Phys Rev E; 2019 Apr; 99(4-1):042603. PubMed ID: 31108620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic glass transition in two dimensions.
    Bayer M; Brader JM; Ebert F; Fuchs M; Lange E; Maret G; Schilling R; Sperl M; Wittmer JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011508. PubMed ID: 17677451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glass transition in 1,4-polybutadiene: Mode-coupling theory analysis of molecular dynamics simulations using a chemically realistic model.
    Paul W; Bedrov D; Smith GD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021501. PubMed ID: 17025431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glass transition and reversible gelation in asymmetric binary mixtures: A study by mode coupling theory and molecular dynamics.
    Germain P; Amokrane S
    Phys Rev E; 2019 Oct; 100(4-1):042614. PubMed ID: 31770885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep learning approach to the measurement of long-lived memory kernels from generalized Langevin dynamics.
    Kerr Winter M; Pihlajamaa I; Debets VE; Janssen LMC
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37366311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.