These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 34373895)
1. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions. An Q; Yu L Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34373895 [TBL] [Abstract][Full Text] [Related]
2. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding. Yue Y; He S BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477 [TBL] [Abstract][Full Text] [Related]
3. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
4. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms. Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566 [TBL] [Abstract][Full Text] [Related]
5. EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data. Zhang Y; Wu M; Wang S; Chen W Front Pharmacol; 2022; 13():1009996. PubMed ID: 36210804 [TBL] [Abstract][Full Text] [Related]
6. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction. Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190 [TBL] [Abstract][Full Text] [Related]
7. Multiview network embedding for drug-target Interactions prediction by consistent and complementary information preserving. Shang Y; Ye X; Futamura Y; Yu L; Sakurai T Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35262678 [TBL] [Abstract][Full Text] [Related]
8. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph. Zhu Y; Ning C; Zhang N; Wang M; Zhang Y BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316 [TBL] [Abstract][Full Text] [Related]
9. Novel drug-target interactions via link prediction and network embedding. Amiri Souri E; Laddach R; Karagiannis SN; Papageorgiou LG; Tsoka S BMC Bioinformatics; 2022 Apr; 23(1):121. PubMed ID: 35379165 [TBL] [Abstract][Full Text] [Related]
10. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622 [TBL] [Abstract][Full Text] [Related]
11. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction. Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738 [TBL] [Abstract][Full Text] [Related]
12. MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding. Binatlı OC; Gönen M BMC Bioinformatics; 2023 Jul; 24(1):276. PubMed ID: 37407927 [TBL] [Abstract][Full Text] [Related]
13. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks. Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415 [TBL] [Abstract][Full Text] [Related]
14. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network. Zhou D; Xu Z; Li W; Xie X; Peng S Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970 [TBL] [Abstract][Full Text] [Related]
15. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network. Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483 [TBL] [Abstract][Full Text] [Related]
16. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. Li J; Wang J; Lv H; Zhang Z; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592 [TBL] [Abstract][Full Text] [Related]
17. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions. Jung YS; Kim Y; Cho YR Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033 [TBL] [Abstract][Full Text] [Related]
19. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction. Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357 [TBL] [Abstract][Full Text] [Related]
20. Drug repurposing and prediction of multiple interaction types via graph embedding. Amiri Souri E; Chenoweth A; Karagiannis SN; Tsoka S BMC Bioinformatics; 2023 May; 24(1):202. PubMed ID: 37193964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]