BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34374212)

  • 1. Refined pancreatobiliary UroVysion criteria and an approach for further optimization.
    Mettman D; Saeed A; Shold J; Laury R; Ly A; Khan I; Golem S; Olyaee M; O'Neil M
    Cancer Med; 2021 Sep; 10(17):5725-5738. PubMed ID: 34374212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples.
    Barr Fritcher EG; Voss JS; Brankley SM; Campion MB; Jenkins SM; Keeney ME; Henry MR; Kerr SM; Chaiteerakij R; Pestova EV; Clayton AC; Zhang J; Roberts LR; Gores GJ; Halling KC; Kipp BR
    Gastroenterology; 2015 Dec; 149(7):1813-1824.e1. PubMed ID: 26327129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UroVysion Multi-Target Fluorescence in situ Hybridization Assay for the Detection of Malignant Bile Duct Brushing Specimens: A Comparison with Routine Cytology.
    Zhai J
    Acta Cytol; 2018; 62(4):295-301. PubMed ID: 29734171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the accuracy of pancreatobiliary tract cytology with fluorescence in situ hybridization: a molecular test with proven clinical success.
    Kipp BR; Barr Fritcher EG; Pettengill JE; Halling KC; Clayton AC
    Cancer Cytopathol; 2013 Nov; 121(11):610-9. PubMed ID: 23633236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Routine brush cytology and fluorescence in situ hybridization for assessment of pancreatobiliary strictures.
    Smoczynski M; Jablonska A; Matyskiel A; Lakomy J; Dubowik M; Marek I; Biernat W; Limon J
    Gastrointest Endosc; 2012 Jan; 75(1):65-73. PubMed ID: 22078103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures.
    Kipp BR; Stadheim LM; Halling SA; Pochron NL; Harmsen S; Nagorney DM; Sebo TJ; Therneau TM; Gores GJ; de Groen PC; Baron TH; Levy MJ; Halling KC; Roberts LR
    Am J Gastroenterol; 2004 Sep; 99(9):1675-81. PubMed ID: 15330900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An assessment of chromosomal alterations detected by fluorescence in situ hybridisation in pancreatobiliary tract malignancy.
    Pu X; Zheng H; Yang X; Ye Q; Fan Z; Yang J; Fan X; Zhou X; Qiu Y; Huang Q; Wu H; Chen J
    BMC Gastroenterol; 2020 Nov; 20(1):367. PubMed ID: 33148183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of KRAS mutation analysis and FISH for detecting pancreatobiliary tract cancer in cytology specimens collected during endoscopic retrograde cholangiopancreatography.
    Kipp BR; Fritcher EG; Clayton AC; Gores GJ; Roberts LR; Zhang J; Levy MJ; Halling KC
    J Mol Diagn; 2010 Nov; 12(6):780-6. PubMed ID: 20864634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted multiprobe fluorescence in situ hybridization analysis for elucidation of inconclusive pancreatobiliary cytology.
    Vlajnic T; Somaini G; Savic S; Barascud A; Grilli B; Herzog M; Obermann EC; Holmes BJ; Ali SZ; Degen L; Bubendorf L
    Cancer Cytopathol; 2014 Aug; 122(8):627-34. PubMed ID: 24753508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of malignant cytologic criteria in pancreatobiliary brushings with corresponding positive fluorescence in situ hybridization results.
    Barr Fritcher EG; Caudill JL; Blue JE; Djuric K; Feipel L; Maritim BK; Ragheb AA; Halling KC; Henry MR; Clayton AC
    Am J Clin Pathol; 2011 Sep; 136(3):442-9. PubMed ID: 21846921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The utility of UroVysion fluorescence in situ hybridization in pancreatic fine-needle aspiration samples directed and obtained by endoscopic ultrasonography.
    Henkes DN; Patel SN; Rosenkranz LA; Escobedo JL
    Arch Pathol Lab Med; 2013 Jan; 137(1):64-71. PubMed ID: 23276176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures.
    Moreno Luna LE; Kipp B; Halling KC; Sebo TJ; Kremers WK; Roberts LR; Barr Fritcher EG; Levy MJ; Gores GJ
    Gastroenterology; 2006 Oct; 131(4):1064-72. PubMed ID: 17030177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FISHing for pancreatobiliary tract malignancy in endoscopic brushings enhances the sensitivity of routine cytology.
    Barr Fritcher EG; Kipp BR; Halling KC; Clayton AC
    Cytopathology; 2014 Oct; 25(5):288-301. PubMed ID: 25073411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures.
    Fritcher EG; Kipp BR; Halling KC; Oberg TN; Bryant SC; Tarrell RF; Gores GJ; Levy MJ; Clayton AC; Sebo TJ; Roberts LR
    Gastroenterology; 2009 Jun; 136(7):2180-6. PubMed ID: 19232347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlating routine cytology, quantitative nuclear morphometry by digital image analysis, and genetic alterations by fluorescence in situ hybridization to assess the sensitivity of cytology for detecting pancreatobiliary tract malignancy.
    Barr Fritcher EG; Kipp BR; Slezak JM; Moreno-Luna LE; Gores GJ; Levy MJ; Roberts LR; Halling KC; Sebo TJ
    Am J Clin Pathol; 2007 Aug; 128(2):272-9. PubMed ID: 17638662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence in situ hybridization compared with conventional cytology for the diagnosis of malignant biliary tract strictures in Asian patients.
    Chaiteerakij R; Barr Fritcher EG; Angsuwatcharakon P; Ridtitid W; Chaithongrat S; Leerapun A; Baron TH; Kipp BR; Henry MR; Halling KC; Rerknimitr R; Roberts LR
    Gastrointest Endosc; 2016 Jun; 83(6):1228-35. PubMed ID: 26684604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures.
    Gonda TA; Glick MP; Sethi A; Poneros JM; Palmas W; Iqbal S; Gonzalez S; Nandula SV; Emond JC; Brown RS; Murty VV; Stevens PD
    Gastrointest Endosc; 2012 Jan; 75(1):74-9. PubMed ID: 22100297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of ancillary studies in the cytologic diagnosis of biliary and pancreatic lesions: the Papanicolaou Society of Cytopathology guidelines for pancreatobiliary cytology.
    Layfield LJ; Ehya H; Filie AC; Hruban RH; Jhala N; Joseph L; Vielh P; Pitman MB;
    Diagn Cytopathol; 2014 Apr; 42(4):351-62. PubMed ID: 24639398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunocytochemistry for Claudin-18 and Maspin in biliary brushing cytology increases the accuracy of diagnosing pancreatobiliary malignancies.
    Tokumitsu T; Sato Y; Yamashita A; Moriguchi-Goto S; Kondo K; Nanashima A; Asada Y
    Cytopathology; 2017 Apr; 28(2):116-121. PubMed ID: 27527114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of fluorescence in situ hybridization in diagnosing cholangiocarcinoma in indeterminate biliary strictures.
    Liew ZH; Loh TJ; Lim TKH; Lim TH; Khor CJL; Mesenas SJ; Kong CSC; Ong WC; Tan DMY
    J Gastroenterol Hepatol; 2018 Jan; 33(1):315-319. PubMed ID: 28543841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.