These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design of Mammalian ON-Riboswitches Based on Tandemly Fused Aptamer and Ribozyme. Mustafina K; Fukunaga K; Yokobayashi Y ACS Synth Biol; 2020 Jan; 9(1):19-25. PubMed ID: 31820936 [TBL] [Abstract][Full Text] [Related]
3. Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. Kobori S; Takahashi K; Yokobayashi Y ACS Synth Biol; 2017 Jul; 6(7):1283-1288. PubMed ID: 28398719 [TBL] [Abstract][Full Text] [Related]
4. Synthetic mammalian riboswitches based on guanine aptazyme. Nomura Y; Kumar D; Yokobayashi Y Chem Commun (Camb); 2012 Jul; 48(57):7215-7. PubMed ID: 22692003 [TBL] [Abstract][Full Text] [Related]
5. Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells. Nomura Y; Yokobayashi Y Methods Mol Biol; 2021; 2323():213-220. PubMed ID: 34086283 [TBL] [Abstract][Full Text] [Related]
6. Aptazyme-based riboswitches and logic gates in mammalian cells. Nomura Y; Yokobayashi Y Methods Mol Biol; 2015; 1316():141-8. PubMed ID: 25967059 [TBL] [Abstract][Full Text] [Related]
7. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts. Goler JA; Carothers JM; Keasling JD Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623 [TBL] [Abstract][Full Text] [Related]
8. Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Rehm C; Klauser B; Finke M; Hartig JS Methods Mol Biol; 2021; 2323():199-212. PubMed ID: 34086282 [TBL] [Abstract][Full Text] [Related]
9. Reversible Gene Regulation in Mammalian Cells Using Riboswitch-Engineered Vesicular Stomatitis Virus Vector. Takahashi K; Yokobayashi Y ACS Synth Biol; 2019 Sep; 8(9):1976-1982. PubMed ID: 31415142 [TBL] [Abstract][Full Text] [Related]
10. Engineering of ribozyme-based riboswitches for mammalian cells. Wieland M; Ausländer D; Fussenegger M Methods; 2012 Mar; 56(3):351-7. PubMed ID: 22305857 [TBL] [Abstract][Full Text] [Related]
11. In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Furukawa K; Gu H; Breaker RR Methods Mol Biol; 2014; 1111():209-20. PubMed ID: 24549622 [TBL] [Abstract][Full Text] [Related]
12. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach. Rehm C; Klauser B; Hartig JS Methods Mol Biol; 2015; 1316():127-40. PubMed ID: 25967058 [TBL] [Abstract][Full Text] [Related]
13. Cell-Free Biosensors Based on Modular Eukaryotic Riboswitches That Function in One Pot at Ambient Temperature. Ogawa A; Fujikawa M; Onishi K; Takahashi H ACS Synth Biol; 2024 Jul; 13(7):2238-2245. PubMed ID: 38913391 [TBL] [Abstract][Full Text] [Related]
14. RNA-based networks: using RNA aptamers and ribozymes as synthetic genetic devices. Weigand JE; Wittmann A; Suess B Methods Mol Biol; 2012; 813():157-68. PubMed ID: 22083741 [TBL] [Abstract][Full Text] [Related]
15. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes. Stifel J; Spöring M; Hartig JS Synth Biol (Oxf); 2019; 4(1):ysy022. PubMed ID: 32995528 [TBL] [Abstract][Full Text] [Related]
16. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Berens C; Groher F; Suess B Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052 [TBL] [Abstract][Full Text] [Related]
17. Screening of Genetic Switches Based on the Twister Ribozyme Motif. Felletti M; Klauser B; Hartig JS Methods Mol Biol; 2016; 1380():225-39. PubMed ID: 26552830 [TBL] [Abstract][Full Text] [Related]