These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 34374742)

  • 1. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data.
    Koch FC; Sutton GJ; Voineagu I; Vafaee F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis.
    Raimundo F; Vallot C; Vert JP
    Genome Biol; 2020 Aug; 21(1):212. PubMed ID: 32831127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrastive self-supervised clustering of scRNA-seq data.
    Ciortan M; Defrance M
    BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does the structure of data impact cell-cell similarity? Evaluating how structural properties influence the performance of proximity metrics in single cell RNA-seq data.
    Watson ER; Mora A; Taherian Fard A; Mar JC
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Quantitative Framework for Evaluating Single-Cell Data Structure Preservation by Dimensionality Reduction Techniques.
    Heiser CN; Lau KS
    Cell Rep; 2020 May; 31(5):107576. PubMed ID: 32375029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis.
    Sun S; Zhu J; Ma Y; Zhou X
    Genome Biol; 2019 Dec; 20(1):269. PubMed ID: 31823809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis.
    Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.
    Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.
    Lin P; Troup M; Ho JW
    Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data.
    Zhu X; Li HD; Xu Y; Guo L; Wu FX; Duan G; Wang J
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.