These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34375022)
1. Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. Whelan MJ; Kim J Integr Environ Assess Manag; 2022 May; 18(3):599-621. PubMed ID: 34375022 [TBL] [Abstract][Full Text] [Related]
2. A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models. Panagopoulos D; MacLeod M Environ Sci Process Impacts; 2018 Jan; 20(1):183-194. PubMed ID: 29300410 [TBL] [Abstract][Full Text] [Related]
3. Investigating the presence and persistence of volatile methylsiloxanes in Arctic sediments. Panagopoulos Abrahamsson D; Warner NA; Jantunen L; Jahnke A; Wong F; MacLeod M Environ Sci Process Impacts; 2020 Apr; 22(4):908-917. PubMed ID: 32048673 [TBL] [Abstract][Full Text] [Related]
4. Identifying organic chemicals not subject to bioaccumulation in air-breathing organisms using predicted partitioning and biotransformation properties. Wania F; Lei YD; Baskaran S; Sangion A Integr Environ Assess Manag; 2022 Sep; 18(5):1297-1312. PubMed ID: 34783167 [TBL] [Abstract][Full Text] [Related]
5. Critical review and interpretation of environmental data for volatile methylsiloxanes: partition properties. Xu S; Kozerski G; Mackay D Environ Sci Technol; 2014 Oct; 48(20):11748-59. PubMed ID: 25238034 [TBL] [Abstract][Full Text] [Related]
6. Batch equilibrium experiments and modeling reveal weak temperature dependence of cyclic volatile methylsiloxane sorption in soil/sediment organic carbon-water systems. Kozerski GE; Kim J; Durham JA; Townsend B Sci Total Environ; 2024 Sep; 942():173541. PubMed ID: 38802002 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (K(OW), K(OA), and K(AW)) for volatile methylsiloxanes and trimethylsilanol. Xu S; Kropscott B Environ Toxicol Chem; 2014 Dec; 33(12):2702-10. PubMed ID: 25242335 [TBL] [Abstract][Full Text] [Related]
8. A new multimedia contaminant fate model for China: how important are environmental parameters in influencing chemical persistence and long-range transport potential? Zhu Y; Price OR; Tao S; Jones KC; Sweetman AJ Environ Int; 2014 Aug; 69():18-27. PubMed ID: 24791706 [TBL] [Abstract][Full Text] [Related]
9. Long-range atmospheric transport of three toxaphene congeners across Europe. Modeling by chained single-box FATEMOD program. Paasivirta J; Sinkkonen S; Nikiforov V; Kryuchkov F; Kolehmainen E; Laihia K; Valkonen A; Lahtinen M Environ Sci Pollut Res Int; 2009 Mar; 16(2):191-205. PubMed ID: 19132429 [TBL] [Abstract][Full Text] [Related]
10. Priority pesticides in Chile: Predicting their environmental distribution, bioaccumulation, and transport potential. Concha C; Manzano CA Integr Environ Assess Manag; 2023 May; 19(3):676-683. PubMed ID: 36069150 [TBL] [Abstract][Full Text] [Related]
11. Exploring the Environmental Exposure to Methoxychlor, α-HCH and Endosulfan-sulfate Residues in Lake Naivasha (Kenya) Using a Multimedia Fate Modeling Approach. Abbasi Y; Mannaerts CM Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326528 [TBL] [Abstract][Full Text] [Related]
12. Expanding the applicability of multimedia fate models to polar organic chemicals. Breivik K; Wania F Environ Sci Technol; 2003 Nov; 37(21):4934-43. PubMed ID: 14620821 [TBL] [Abstract][Full Text] [Related]
13. Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta. Hu T; Zhang J; Xu X; Wang X; Yang C; Song C; Wang S; Zhao S Chemosphere; 2023 May; 323():138211. PubMed ID: 36828112 [TBL] [Abstract][Full Text] [Related]
14. Estimating the Bioaccumulation Potential of Hydrophobic Ultraviolet Stabilizers Using Experimental Partitioning Properties. Do ATN; Kim Y; Ha Y; Kwon JH Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409673 [TBL] [Abstract][Full Text] [Related]
15. Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment. Xu S; Wania F Chemosphere; 2013 Oct; 93(5):835-43. PubMed ID: 23177006 [TBL] [Abstract][Full Text] [Related]
17. Georeferenced multimedia environmental fate of volatile methylsiloxanes modeled in the populous Tokyo Bay catchment basin. Sakurai T; Imaizumi Y; Kuroda K; Hayashi TI; Suzuki N Sci Total Environ; 2019 Nov; 689():843-853. PubMed ID: 31280166 [TBL] [Abstract][Full Text] [Related]
18. Moving persistence assessments into the 21st century: A role for weight-of-evidence and overall persistence. Redman AD; Bietz J; Davis JW; Lyon D; Maloney E; Ott A; Otte JC; Palais F; Parsons JR; Wang N Integr Environ Assess Manag; 2022 Jun; 18(4):868-887. PubMed ID: 34730270 [TBL] [Abstract][Full Text] [Related]
19. Predicting the fate and effects of tributyltin in marine systems. Meador JP Rev Environ Contam Toxicol; 2000; 166():1-48. PubMed ID: 10868075 [TBL] [Abstract][Full Text] [Related]
20. Modeling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic compounds. Mostrag A; Puzyn T; Haranczyk M Environ Sci Pollut Res Int; 2010 Feb; 17(2):470-7. PubMed ID: 19937279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]