These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34375042)

  • 1. Biosynthesis of the Fungal Organophosphonate Fosfonochlorin Involves an Iron(II) and 2-(Oxo)glutarate Dependent Oxacyclase.
    Gama SR; Stankovic T; Hupp K; Al Hejami A; McClean M; Evans A; Beauchemin D; Hammerschmidt F; Pallitsch K; Zechel DL
    Chembiochem; 2022 Jan; 23(2):e202100352. PubMed ID: 34375042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Distinct Mechanisms for C-C Desaturation by Iron(II)- and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance.
    Dunham NP; Chang WC; Mitchell AJ; Martinie RJ; Zhang B; Bergman JA; Rajakovich LJ; Wang B; Silakov A; Krebs C; Boal AK; Bollinger JM
    J Am Chem Soc; 2018 Jun; 140(23):7116-7126. PubMed ID: 29708749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Unusual Ferryl Intermediate and Its Implications for the Mechanism of Oxacyclization by the Loline-Producing Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, LolO.
    Pan J; Wenger ES; Lin CY; Zhang B; Sil D; Schaperdoth I; Saryazdi S; Grossman RB; Krebs C; Bollinger JM
    Biochemistry; 2024 Jul; 63(13):1674-1683. PubMed ID: 38898603
    [No Abstract]   [Full Text] [Related]  

  • 4. α-Amine Desaturation of d-Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent l-Arginine 3-Hydroxylase, VioC.
    Dunham NP; Mitchell AJ; Del Río Pantoja JM; Krebs C; Bollinger JM; Boal AK
    Biochemistry; 2018 Nov; 57(46):6479-6488. PubMed ID: 30403469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases.
    Rajakovich LJ; Pandelia ME; Mitchell AJ; Chang WC; Zhang B; Boal AK; Krebs C; Bollinger JM
    Biochemistry; 2019 Mar; 58(12):1627-1647. PubMed ID: 30789718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutarate Hydroxylation by the Carbon Starvation-Induced Protein D: A Computational Study into the Stereo- and Regioselectivities of the Reaction.
    Han SB; Ali HS; de Visser SP
    Inorg Chem; 2021 Apr; 60(7):4800-4815. PubMed ID: 33764783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases.
    Pan J; Wenger ES; Matthews ML; Pollock CJ; Bhardwaj M; Kim AJ; Allen BD; Grossman RB; Krebs C; Bollinger JM
    J Am Chem Soc; 2019 Sep; 141(38):15153-15165. PubMed ID: 31475820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that oxidative dephosphorylation by the nonheme Fe(II), α-ketoglutarate:UMP oxygenase occurs by stereospecific hydroxylation.
    Goswami A; Liu X; Cai W; Wyche TP; Bugni TS; Meurillon M; Peyrottes S; Perigaud C; Nonaka K; Rohr J; Van Lanen SG
    FEBS Lett; 2017 Feb; 591(3):468-478. PubMed ID: 28074470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.
    Mitchell AJ; Dunham NP; Martinie RJ; Bergman JA; Pollock CJ; Hu K; Allen BD; Chang WC; Silakov A; Bollinger JM; Krebs C; Boal AK
    J Am Chem Soc; 2017 Oct; 139(39):13830-13836. PubMed ID: 28823155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Uncoupled Carbocyclization and Epimerization Catalyzed by Two Non-Heme Iron/α-Ketoglutarate Dependent Enzymes.
    Li H; Zhu W; Liu Y
    J Chem Inf Model; 2019 Dec; 59(12):5086-5098. PubMed ID: 31790238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate.
    Grzyska PK; Ryle MJ; Monterosso GR; Liu J; Ballou DP; Hausinger RP
    Biochemistry; 2005 Mar; 44(10):3845-55. PubMed ID: 15751960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autocatalysed oxidative modifications to 2-oxoglutarate dependent oxygenases.
    Mantri M; Zhang Z; McDonough MA; Schofield CJ
    FEBS J; 2012 May; 279(9):1563-75. PubMed ID: 22251775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent non-heme iron enzymes in the nogalamycin biosynthetic pathway.
    Siitonen V; Selvaraj B; Niiranen L; Lindqvist Y; Schneider G; Metsä-Ketelä M
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5251-6. PubMed ID: 27114534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD.
    Davis KM; Altmyer M; Martinie RJ; Schaperdoth I; Krebs C; Bollinger JM; Boal AK
    Biochemistry; 2019 Oct; 58(41):4218-4223. PubMed ID: 31503454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C
    Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fosfonochlorin, a new antibiotic with spheroplast forming activity.
    Takeuchi M; Nakajima M; Ogita T; Inukai M; Kodama K; Furuya K; Nagaki H; Haneishi T
    J Antibiot (Tokyo); 1989 Feb; 42(2):198-205. PubMed ID: 2925511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.
    Peck SC; van der Donk WA
    Curr Opin Chem Biol; 2013 Aug; 17(4):580-8. PubMed ID: 23870698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state.
    Ye S; Neese F
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1228-33. PubMed ID: 21220293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase.
    Zhang Z; Ren J; Stammers DK; Baldwin JE; Harlos K; Schofield CJ
    Nat Struct Biol; 2000 Feb; 7(2):127-33. PubMed ID: 10655615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.