These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34375042)
21. An Iron(IV)-Oxo Intermediate Initiating l-Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme. Copeland RA; Davis KM; Shoda TKC; Blaesi EJ; Boal AK; Krebs C; Bollinger JM J Am Chem Soc; 2021 Feb; 143(5):2293-2303. PubMed ID: 33522811 [TBL] [Abstract][Full Text] [Related]
22. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity. Yin G Acc Chem Res; 2013 Feb; 46(2):483-92. PubMed ID: 23194251 [TBL] [Abstract][Full Text] [Related]
23. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. Huang X; Groves JT J Biol Inorg Chem; 2017 Apr; 22(2-3):185-207. PubMed ID: 27909920 [TBL] [Abstract][Full Text] [Related]
24. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Zwick CR; Renata H Nat Prod Rep; 2020 Aug; 37(8):1065-1079. PubMed ID: 32055818 [TBL] [Abstract][Full Text] [Related]
25. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Wojdyla Z; Borowski T Chemistry; 2022 Mar; 28(18):e202104106. PubMed ID: 34986268 [TBL] [Abstract][Full Text] [Related]
26. Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes: streptorubin B biosynthesis as an example. Sydor PK; Challis GL Methods Enzymol; 2012; 516():195-218. PubMed ID: 23034230 [TBL] [Abstract][Full Text] [Related]
27. Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). Dunham NP; Del Río Pantoja JM; Zhang B; Rajakovich LJ; Allen BD; Krebs C; Boal AK; Bollinger JM J Am Chem Soc; 2019 Jun; 141(25):9964-9979. PubMed ID: 31117657 [TBL] [Abstract][Full Text] [Related]
28. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Borisova SA; Circello BT; Zhang JK; van der Donk WA; Metcalf WW Chem Biol; 2010 Jan; 17(1):28-37. PubMed ID: 20142038 [TBL] [Abstract][Full Text] [Related]
29. Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation. Drummond MJ; Ford CL; Gray DL; Popescu CV; Fout AR J Am Chem Soc; 2019 Apr; 141(16):6639-6650. PubMed ID: 30969766 [TBL] [Abstract][Full Text] [Related]
30. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
31. Changes in Regioselectivity of H Atom Abstraction during the Hydroxylation and Cyclization Reactions Catalyzed by Hyoscyamine 6β-Hydroxylase. Ushimaru R; Ruszczycky MW; Liu HW J Am Chem Soc; 2019 Jan; 141(2):1062-1066. PubMed ID: 30545219 [TBL] [Abstract][Full Text] [Related]
32. Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. Tao H; Ushimaru R; Awakawa T; Mori T; Uchiyama M; Abe I J Am Chem Soc; 2022 Nov; 144(47):21512-21520. PubMed ID: 36395461 [TBL] [Abstract][Full Text] [Related]
33. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related]
34. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Matthews ML; Neumann CS; Miles LA; Grove TL; Booker SJ; Krebs C; Walsh CT; Bollinger JM Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17723-8. PubMed ID: 19815524 [TBL] [Abstract][Full Text] [Related]
35. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834 [TBL] [Abstract][Full Text] [Related]
36. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. Salowe SP; Marsh EN; Townsend CA Biochemistry; 1990 Jul; 29(27):6499-508. PubMed ID: 2207091 [TBL] [Abstract][Full Text] [Related]
37. Directed metal (oxo) aliphatic C-H hydroxylations: overriding substrate bias. Bigi MA; Reed SA; White MC J Am Chem Soc; 2012 Jun; 134(23):9721-6. PubMed ID: 22607637 [TBL] [Abstract][Full Text] [Related]
38. Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Martinie RJ; Pollock CJ; Matthews ML; Bollinger JM; Krebs C; Silakov A Inorg Chem; 2017 Nov; 56(21):13382-13389. PubMed ID: 28960972 [TBL] [Abstract][Full Text] [Related]
39. Self-hydroxylation of taurine/alpha-ketoglutarate dioxygenase: evidence for more than one oxygen activation mechanism. Koehntop KD; Marimanikkuppam S; Ryle MJ; Hausinger RP; Que L J Biol Inorg Chem; 2006 Jan; 11(1):63-72. PubMed ID: 16320009 [TBL] [Abstract][Full Text] [Related]
40. Biochemical and Spectroscopic Characterization of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme from Pseudomonas syringae pv. phaseolicola PK2. Martinez S; Hausinger RP Biochemistry; 2016 Nov; 55(43):5989-5999. PubMed ID: 27749027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]