These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34375091)

  • 1. Carbon Nanotube Polymer Scaffolds as a Conductive Alternative for the Construction of Retinal Sheet Tissue.
    Yang R; Yang S; Li K; Luo Z; Xian B; Tang J; Ye M; Lu S; Zhang H; Ge J
    ACS Chem Neurosci; 2021 Sep; 12(17):3167-3175. PubMed ID: 34375091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold.
    Li K; Zhong X; Yang S; Luo Z; Li K; Liu Y; Cai S; Gu H; Lu S; Zhang H; Wei Y; Zhuang J; Zhuo Y; Fan Z; Ge J
    Acta Biomater; 2017 May; 54():117-127. PubMed ID: 28216299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes.
    Sun Y; Liu X; George MN; Park S; Gaihre B; Terzic A; Lu L
    J Biomed Mater Res A; 2021 Feb; 109(2):193-206. PubMed ID: 32441388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds.
    Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L
    Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation.
    Shafiee A; Kehtari M; Zarei Z; Soleimani M; Varshochian R; Ahmadi A; Atyabi F; Dinarvand R
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111739. PubMed ID: 33545882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction.
    Wu S; Qi Y; Shi W; Kuss M; Chen S; Duan B
    Acta Biomater; 2022 Feb; 139():91-104. PubMed ID: 33271357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering.
    Dominguez-Alfaro A; Alegret N; Arnaiz B; González-Domínguez JM; Martin-Pacheco A; Cossío U; Porcarelli L; Bosi S; Vázquez E; Mecerreyes D; Prato M
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1269-1278. PubMed ID: 33464834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing Carbon Nanotubes (CNTs) in Rat Peripheral Nerve Regenerated with Conductive Conduits Composed of Poly(lactide-
    Huang Z; Ma Y; Jing W; Zhang Y; Jia X; Cai Q; Ao Q; Yang X
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6344-6355. PubMed ID: 33449666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model.
    Li X; Yang W; Xie H; Wang J; Zhang L; Wang Z; Wang L
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):36860-36872. PubMed ID: 32649170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.
    Ahn HS; Hwang JY; Kim MS; Lee JY; Kim JW; Kim HS; Shin US; Knowles JC; Kim HW; Hyun JK
    Acta Biomater; 2015 Feb; 13():324-34. PubMed ID: 25463487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes.
    Gaharwar AK; Patel A; Dolatshahi-Pirouz A; Zhang H; Rangarajan K; Iviglia G; Shin SR; Hussain MA; Khademhosseini A
    Biomater Sci; 2015 Jan; 3(1):46-58. PubMed ID: 26214188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications.
    Cheng Q; Rutledge K; Jabbarzadeh E
    Ann Biomed Eng; 2013 May; 41(5):904-16. PubMed ID: 23283475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progress of neural tissue engineering based on electrically conductive carbon nanotube scaffold].
    Xiang N; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Nov; 25(11):1389-92. PubMed ID: 22229201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time.
    Eleftheriou CG; Zimmermann JB; Kjeldsen HD; David-Pur M; Hanein Y; Sernagor E
    Biomaterials; 2017 Jan; 112():108-121. PubMed ID: 27760395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.