These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34375142)
1. Machine-Deep-Ensemble Learning Model for Classifying Cybersickness Caused by Virtual Reality Immersion. Oh S; Kim DK Cyberpsychol Behav Soc Netw; 2021 Nov; 24(11):729-736. PubMed ID: 34375142 [TBL] [Abstract][Full Text] [Related]
2. Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments. Garcia-Agundez A; Reuter C; Becker H; Konrad R; Caserman P; Miede A; Göbel S Games Health J; 2019 Dec; 8(6):439-444. PubMed ID: 31295007 [No Abstract] [Full Text] [Related]
3. Machine learning methods for the study of cybersickness: a systematic review. Yang AHX; Kasabov N; Cakmak YO Brain Inform; 2022 Oct; 9(1):24. PubMed ID: 36209445 [TBL] [Abstract][Full Text] [Related]
4. Prediction and detection of virtual reality induced cybersickness: a spiking neural network approach using spatiotemporal EEG brain data and heart rate variability. Yang AHX; Kasabov NK; Cakmak YO Brain Inform; 2023 Jul; 10(1):15. PubMed ID: 37438494 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Identification of Surgical and Operative Factors Associated With Surgical Expertise in Virtual Reality Simulation. Winkler-Schwartz A; Yilmaz R; Mirchi N; Bissonnette V; Ledwos N; Siyar S; Azarnoush H; Karlik B; Del Maestro R JAMA Netw Open; 2019 Aug; 2(8):e198363. PubMed ID: 31373651 [TBL] [Abstract][Full Text] [Related]
6. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment. Ding X; Li Y; Li D; Li L; Liu X Brain Behav; 2020 Nov; 10(11):e01814. PubMed ID: 32862513 [TBL] [Abstract][Full Text] [Related]
7. Biomarkers of Immersion in Virtual Reality Based on Features Extracted from the EEG Signals: A Machine Learning Approach. Tadayyoni H; Ramirez Campos MS; Quevedo AJU; Murphy BA Brain Sci; 2024 May; 14(5):. PubMed ID: 38790449 [TBL] [Abstract][Full Text] [Related]
8. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
9. Early warning of telecom enterprise customer churn based on ensemble learning. Zhou Y; Chen W; Sun X; Yang D PLoS One; 2023; 18(10):e0292466. PubMed ID: 37819986 [TBL] [Abstract][Full Text] [Related]
10. Optimized virtual reality design through user immersion level detection with novel feature fusion and explainable artificial intelligence. Raza A; Rehman A; Sehar R; Alamri FS; Alotaibi S; Al Ghofaily B; Saba T PeerJ Comput Sci; 2024; 10():e2150. PubMed ID: 39145242 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Specific Anxiety Symptoms and Virtual Reality Sickness Using In Situ Autonomic Physiological Signals During Virtual Reality Treatment in Patients With Social Anxiety Disorder: Mixed Methods Study. Chun JY; Kim HJ; Hur JW; Jung D; Lee HJ; Pack SP; Lee S; Kim G; Cho CY; Lee SM; Lee H; Choi S; Cheong T; Cho CH JMIR Serious Games; 2022 Sep; 10(3):e38284. PubMed ID: 36112407 [TBL] [Abstract][Full Text] [Related]
12. Machine learning distinguishes neurosurgical skill levels in a virtual reality tumor resection task. Siyar S; Azarnoush H; Rashidi S; Winkler-Schwartz A; Bissonnette V; Ponnudurai N; Del Maestro RF Med Biol Eng Comput; 2020 Jun; 58(6):1357-1367. PubMed ID: 32279203 [TBL] [Abstract][Full Text] [Related]
13. Classifying 2-year recurrence in patients with dlbcl using clinical variables with imbalanced data and machine learning methods. Wang L; Zhao Z; Luo Y; Yu H; Wu S; Ren X; Zheng C; Huang X Comput Methods Programs Biomed; 2020 Nov; 196():105567. PubMed ID: 32544778 [TBL] [Abstract][Full Text] [Related]
14. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques. Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881 [TBL] [Abstract][Full Text] [Related]
15. Effect of economically friendly acustimulation approach against cybersickness in video-watching tasks using consumer virtual reality devices. Liu R; Zhuang C; Yang R; Ma L Appl Ergon; 2020 Jan; 82():102946. PubMed ID: 31487560 [TBL] [Abstract][Full Text] [Related]
16. Cybersickness and Its Severity Arising from Virtual Reality Content: A Comprehensive Study. Oh H; Son W Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214216 [TBL] [Abstract][Full Text] [Related]
17. Classification of Parkinson's disease based on multi-modal features and stacking ensemble learning. Yang Y; Wei L; Hu Y; Wu Y; Hu L; Nie S J Neurosci Methods; 2021 Feb; 350():109019. PubMed ID: 33321153 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters. Peng K; Tang Z; Dong L; Sun D Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning With K-Means Dimensional Reduction for Predicting Survival Outcomes in Patients With Breast Cancer. Zhao M; Tang Y; Kim H; Hasegawa K Cancer Inform; 2018; 17():1176935118810215. PubMed ID: 30455569 [TBL] [Abstract][Full Text] [Related]
20. Classification of Emotional and Immersive Outcomes in the Context of Virtual Reality Scene Interactions. Daşdemir Y Diagnostics (Basel); 2023 Nov; 13(22):. PubMed ID: 37998573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]