These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34375280)

  • 21. Scalable Inverse Reinforcement Learning Through Multifidelity Bayesian Optimization.
    Imani M; Ghoreishi SF
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):4125-4132. PubMed ID: 33481721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A complementary learning systems approach to temporal difference learning.
    Blakeman S; Mareschal D
    Neural Netw; 2020 Feb; 122():218-230. PubMed ID: 31689680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salience Interest Option: Temporal abstraction with salience interest functions.
    Zhu X; Zhao L; Zhu W
    Neural Netw; 2024 Aug; 176():106342. PubMed ID: 38692188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human skill knowledge guided global trajectory policy reinforcement learning method.
    Zang Y; Wang P; Zha F; Guo W; Li C; Sun L
    Front Neurorobot; 2024; 18():1368243. PubMed ID: 38559491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. State-Temporal Compression in Reinforcement Learning With the Reward-Restricted Geodesic Metric.
    Guo S; Yan Q; Su X; Hu X; Chen F
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5572-5589. PubMed ID: 33764874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active learning of causal structures with deep reinforcement learning.
    Amirinezhad A; Salehkaleybar S; Hashemi M
    Neural Netw; 2022 Oct; 154():22-30. PubMed ID: 35843011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.
    Ji CX; Oberst M; Kanjilal S; Sontag D
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():305-314. PubMed ID: 34457145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orientation-Preserving Rewards' Balancing in Reinforcement Learning.
    Ren J; Guo S; Chen F
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6458-6472. PubMed ID: 34115593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reinforcement Learning, Fast and Slow.
    Botvinick M; Ritter S; Wang JX; Kurth-Nelson Z; Blundell C; Hassabis D
    Trends Cogn Sci; 2019 May; 23(5):408-422. PubMed ID: 31003893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.
    Villarrubia-Martin EA; Rodriguez-Benitez L; Jimenez-Linares L; Muñoz-Valero D; Liu J
    Int J Neural Syst; 2023 Dec; 33(12):2350065. PubMed ID: 37857407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning the Dynamic Treatment Regimes from Medical Registry Data through Deep Q-network.
    Liu N; Liu Y; Logan B; Xu Z; Tang J; Wang Y
    Sci Rep; 2019 Feb; 9(1):1495. PubMed ID: 30728403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ToyArchitecture: Unsupervised learning of interpretable models of the environment.
    Vítků J; Dluhoš P; Davidson J; Nikl M; Andersson S; Paška P; Šinkora J; Hlubuček P; Stránský M; Hyben M; Poliak M; Feyereisl J; Rosa M
    PLoS One; 2020; 15(5):e0230432. PubMed ID: 32421693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots.
    Zhu W; Guo X; Owaki D; Kutsuzawa K; Hayashibe M
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3444-3459. PubMed ID: 34587101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach.
    Pan J; Huang J; Cheng G; Zeng Y
    Neural Netw; 2023 Jan; 157():288-304. PubMed ID: 36375347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning.
    Van Slooten JC; Jahfari S; Theeuwes J
    Sci Rep; 2019 Nov; 9(1):17436. PubMed ID: 31758031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust Inverse Q-Learning for Continuous-Time Linear Systems in Adversarial Environments.
    Lian B; Xue W; Lewis FL; Chai T
    IEEE Trans Cybern; 2022 Dec; 52(12):13083-13095. PubMed ID: 34403352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversity Evolutionary Policy Deep Reinforcement Learning.
    Liu J; Feng L
    Comput Intell Neurosci; 2021; 2021():5300189. PubMed ID: 34394336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.