These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34375280)

  • 41. Actor-Critic Learning Control With Regularization and Feature Selection in Policy Gradient Estimation.
    Li L; Li D; Song T; Xu X
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):1217-1227. PubMed ID: 32324571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses.
    Yuan M; Wu X; Yan R; Tang H
    Neural Comput; 2019 Dec; 31(12):2368-2389. PubMed ID: 31614099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Learning the Dynamic Treatment Regimes from Medical Registry Data through Deep Q-network.
    Liu N; Liu Y; Logan B; Xu Z; Tang J; Wang Y
    Sci Rep; 2019 Feb; 9(1):1495. PubMed ID: 30728403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Manifold-Based Reinforcement Learning via Locally Linear Reconstruction.
    Xu X; Huang Z; Zuo L; He H
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):934-947. PubMed ID: 26829806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep Reinforcement Learning and Its Neuroscientific Implications.
    Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z
    Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural circuits for learning context-dependent associations of stimuli.
    Zhu H; Paschalidis IC; Hasselmo ME
    Neural Netw; 2018 Nov; 107():48-60. PubMed ID: 30177226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of reinforcement learning in cognitive radio networks: models and algorithms.
    Yau KL; Poh GS; Chien SF; Al-Rawi HA
    ScientificWorldJournal; 2014; 2014():209810. PubMed ID: 24995352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self reward design with fine-grained interpretability.
    Tjoa E; Guan C
    Sci Rep; 2023 Jan; 13(1):1638. PubMed ID: 36717641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Partial Policy-Based Reinforcement Learning for Anatomical Landmark Localization in 3D Medical Images.
    Abdullah Al W; Yun ID
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1245-1255. PubMed ID: 31603816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporating causal factors into reinforcement learning for dynamic treatment regimes in HIV.
    Yu C; Dong Y; Liu J; Ren G
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):60. PubMed ID: 30961606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design Method for a Wideband Non-Uniformly Spaced Linear Array Using the Modified Reinforcement Learning Algorithm.
    Kang S; Kim S; Park C; Chung W
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ensemble algorithms in reinforcement learning.
    Wiering MA; van Hasselt H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):930-6. PubMed ID: 18632380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward Interpretable-AI Policies Using Evolutionary Nonlinear Decision Trees for Discrete-Action Systems.
    Dhebar Y; Deb K; Nageshrao S; Zhu L; Filev D
    IEEE Trans Cybern; 2024 Jan; 54(1):50-62. PubMed ID: 35737627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications.
    Nguyen TT; Nguyen ND; Nahavandi S
    IEEE Trans Cybern; 2020 Sep; 50(9):3826-3839. PubMed ID: 32203045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reward-predictive representations generalize across tasks in reinforcement learning.
    Lehnert L; Littman ML; Frank MJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008317. PubMed ID: 33057329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.
    Yun S; Choi J; Yoo Y; Yun K; Choi JY
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2239-2252. PubMed ID: 29771675
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.