These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 34375365)
21. Dynamic contrast-enhanced computed tomography diagnosis of primary liver cancers using transfer learning of pretrained convolutional neural networks: Is registration of multiphasic images necessary? Yamada A; Oyama K; Fujita S; Yoshizawa E; Ichinohe F; Komatsu D; Fujinaga Y Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1295-1301. PubMed ID: 31054130 [TBL] [Abstract][Full Text] [Related]
22. Arterial enhancing local tumor progression detection on CT images using convolutional neural network after hepatocellular carcinoma ablation: a preliminary study. Lim S; Shin Y; Lee YH Sci Rep; 2022 Feb; 12(1):1754. PubMed ID: 35110631 [TBL] [Abstract][Full Text] [Related]
23. ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans. Ou J; Jiang L; Bai T; Zhan P; Liu R; Xiao H Comput Biol Med; 2024 Jul; 177():108625. PubMed ID: 38823365 [TBL] [Abstract][Full Text] [Related]
24. Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks. Liu X; Guo S; Yang B; Ma S; Zhang H; Li J; Sun C; Jin L; Li X; Yang Q; Fu Y J Digit Imaging; 2018 Oct; 31(5):748-760. PubMed ID: 29679242 [TBL] [Abstract][Full Text] [Related]
25. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Jodeiri A; Zoroofi RA; Hiasa Y; Takao M; Sugano N; Sato Y; Otake Y Comput Methods Programs Biomed; 2020 Feb; 184():105282. PubMed ID: 31896056 [TBL] [Abstract][Full Text] [Related]
26. Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour. Jin R; Wang M; Xu L; Lu J; Song E; Ma G Med Phys; 2023 Apr; 50(4):2100-2120. PubMed ID: 36413182 [TBL] [Abstract][Full Text] [Related]
27. DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma. Huang H; Xie Y; Wang G; Zhang L; Zhou W Comput Methods Programs Biomed; 2022 Dec; 227():107201. PubMed ID: 36335751 [TBL] [Abstract][Full Text] [Related]
28. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
29. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
30. Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Chlebus G; Schenk A; Moltz JH; van Ginneken B; Hahn HK; Meine H Sci Rep; 2018 Oct; 8(1):15497. PubMed ID: 30341319 [TBL] [Abstract][Full Text] [Related]
31. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images. Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986 [TBL] [Abstract][Full Text] [Related]
32. Deep learning and level set approach for liver and tumor segmentation from CT scans. Alirr OI J Appl Clin Med Phys; 2020 Oct; 21(10):200-209. PubMed ID: 33113290 [TBL] [Abstract][Full Text] [Related]
33. A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis. Ahmad M; Qadri SF; Qadri S; Saeed IA; Zareen SS; Iqbal Z; Alabrah A; Alaghbari HM; Mizanur Rahman SM Comput Intell Neurosci; 2022; 2022():7954333. PubMed ID: 35755754 [TBL] [Abstract][Full Text] [Related]
35. Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models. Wardhana G; Naghibi H; Sirmacek B; Abayazid M Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):41-51. PubMed ID: 33219906 [TBL] [Abstract][Full Text] [Related]
36. An effective approach for CT lung segmentation using mask region-based convolutional neural networks. Hu Q; de F Souza LF; Holanda GB; Alves SSA; Dos S Silva FH; Han T; Rebouças Filho PP Artif Intell Med; 2020 Mar; 103():101792. PubMed ID: 32143797 [TBL] [Abstract][Full Text] [Related]
37. Analysis of Abdominal Computed Tomography Images for Automatic Liver Cancer Diagnosis Using Image Processing Algorithm. Khan AA; Narejo GB Curr Med Imaging Rev; 2019; 15(10):972-982. PubMed ID: 32008524 [TBL] [Abstract][Full Text] [Related]
38. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
39. Accuracy of automated segmentation and volumetry of acute intracerebral hemorrhage following minimally invasive surgery using a patch-based convolutional neural network in a small dataset. Elsheikh S; Elbaz A; Rau A; Demerath T; Fung C; Kellner E; Urbach H; Reisert M Neuroradiology; 2024 Apr; 66(4):601-608. PubMed ID: 38367095 [TBL] [Abstract][Full Text] [Related]
40. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT. Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]