These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34375417)

  • 1. Intact Proactive Motor Inhibition after Unilateral Prefrontal Cortex or Basal Ganglia Lesions.
    Liebrand M; Solbakk AK; Funderud I; Buades-Rotger M; Knight RT; Krämer UM
    J Cogn Neurosci; 2021 Aug; 33(9):1862-1879. PubMed ID: 34375417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Dynamics of Proactive and Reactive Motor Inhibition.
    Liebrand M; Pein I; Tzvi E; Krämer UM
    Front Hum Neurosci; 2017; 11():204. PubMed ID: 28496405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the lateral prefrontal cortex in inhibitory motor control.
    Krämer UM; Solbakk AK; Funderud I; Løvstad M; Endestad T; Knight RT
    Cortex; 2013 Mar; 49(3):837-49. PubMed ID: 22699024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparatory attention after lesions to the lateral or orbital prefrontal cortex--an event-related potentials study.
    Funderud I; Løvstad M; Lindgren M; Endestad T; Due-Tønnessen P; Meling TR; Knight RT; Solbakk AK
    Brain Res; 2013 Aug; 1527():174-88. PubMed ID: 23831520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of proactive and reactive inhibition of saccadic eye movements.
    Talanow T; Kasparbauer AM; Lippold JV; Weber B; Ettinger U
    Brain Imaging Behav; 2020 Feb; 14(1):72-88. PubMed ID: 30298238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
    Guo Y; Schmitz TW; Mur M; Ferreira CS; Anderson MC
    Neuropsychologia; 2018 Jan; 108():117-134. PubMed ID: 29199109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ready for change: Oscillatory mechanisms of proactive motor control.
    Liebrand M; Kristek J; Tzvi E; Krämer UM
    PLoS One; 2018; 13(5):e0196855. PubMed ID: 29768455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the effects of age on proactive control in healthy adults.
    Hu S; Job M; Jenks SK; Chao HH; Li CR
    Brain Imaging Behav; 2019 Dec; 13(6):1526-1537. PubMed ID: 31011949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMS reveals distinct patterns of proactive and reactive inhibition in motor system activity.
    Tran DMD; Prieto I; Otto AR; Livesey EJ
    Neuropsychologia; 2022 Sep; 174():108348. PubMed ID: 35998766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proactive Response Inhibition and Subcortical Gray Matter Integrity in Traumatic Brain Injury.
    Hermans L; Beeckmans K; Michiels K; Lafosse C; Sunaert S; Coxon JP; Swinnen SP; Leunissen I
    Neurorehabil Neural Repair; 2017 Mar; 31(3):228-239. PubMed ID: 27794134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proactive Control Strategies for Overt and Covert Go/NoGo Tasks: An Electrical Neuroimaging Study.
    Angelini M; Calbi M; Ferrari A; Sbriscia-Fioretti B; Franca M; Gallese V; Umiltà MA
    PLoS One; 2016; 11(3):e0152188. PubMed ID: 27010832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expectations and violations: delineating the neural network of proactive inhibitory control.
    Zandbelt BB; Bloemendaal M; Neggers SF; Kahn RS; Vink M
    Hum Brain Mapp; 2013 Sep; 34(9):2015-24. PubMed ID: 22359406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex.
    Castro-Meneses LJ; Johnson BW; Sowman PF
    Exp Brain Res; 2016 Jan; 234(1):185-95. PubMed ID: 26419662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition.
    Messel MS; Raud L; Hoff PK; Stubberud J; Huster RJ
    Neuroimage; 2021 Nov; 241():118400. PubMed ID: 34311382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.
    Jahfari S; Verbruggen F; Frank MJ; Waldorp LJ; Colzato L; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2012 Aug; 32(32):10870-8. PubMed ID: 22875921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ERP study on proactive and reactive response inhibition in individuals with schizotypy.
    Jia LX; Qin XJ; Cui JF; Zheng Q; Yang TX; Wang Y; Chan RCK
    Sci Rep; 2021 Apr; 11(1):8394. PubMed ID: 33863942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustments to Proactive Motor Inhibition without Effector-Specific Foreknowledge Are Reflected in a Bilateral Upregulation of Sensorimotor β-Burst Rates.
    Soh C; Hynd M; Rangel BO; Wessel JR
    J Cogn Neurosci; 2021 Apr; 33(5):784-798. PubMed ID: 34449841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proactive task set influences how response inhibition is implemented in the basal ganglia.
    Leunissen I; Coxon JP; Swinnen SP
    Hum Brain Mapp; 2016 Dec; 37(12):4706-4717. PubMed ID: 27489078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontal cortex and basal ganglia contributions to visual working memory.
    Voytek B; Knight RT
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18167-72. PubMed ID: 20921401
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.