These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34375527)

  • 21. Heterogeneous structural changes correlated to local atomic order in thermal rejuvenation process of Cu-Zr metallic glass.
    Wakeda M; Saida J
    Sci Technol Adv Mater; 2019; 20(1):632-642. PubMed ID: 31258826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein β-Relaxation in Molecular Glasses.
    Ngai KL; Wang LM; Yu HB
    J Phys Chem Lett; 2017 Jun; 8(12):2739-2744. PubMed ID: 28585827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of chemical structure on the stability of physical vapor deposited glasses of 1,3,5-triarylbenzene.
    Liu T; Cheng K; Salami-Ranjbaran E; Gao F; Li C; Tong X; Lin YC; Zhang Y; Zhang W; Klinge L; Walsh PJ; Fakhraai Z
    J Chem Phys; 2015 Aug; 143(8):084506. PubMed ID: 26328855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of β Relaxation in Vapor-Deposited Ultrastable Glasses.
    Yu HB; Tylinski M; Guiseppi-Elie A; Ediger MD; Richert R
    Phys Rev Lett; 2015 Oct; 115(18):185501. PubMed ID: 26565473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastable and polyamorphic states of vapor-deposited 2-methyltetrahydrofuran.
    Riechers B; Guiseppi-Elie A; Ediger MD; Richert R
    J Chem Phys; 2019 Jun; 150(21):214502. PubMed ID: 31176341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular packing in highly stable glasses of vapor-deposited tris-naphthylbenzene isomers.
    Dawson K; Kopff LA; Zhu L; McMahon RJ; Yu L; Richert R; Ediger MD
    J Chem Phys; 2012 Mar; 136(9):094505. PubMed ID: 22401450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using fluctuation microscopy to characterize structural order in metallic glasses.
    Li J; Gu X; Hufnagel TC
    Microsc Microanal; 2003 Dec; 9(6):509-15. PubMed ID: 14750985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using 4D STEM to Probe Mesoscale Order in Molecular Glass Films Prepared by Physical Vapor Deposition.
    Chatterjee D; Huang S; Gu K; Ju J; Yu J; Bock H; Yu L; Ediger MD; Voyles PM
    Nano Lett; 2023 Mar; 23(5):2009-2015. PubMed ID: 36799489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between corrosion and nanoscale friction on a metallic glass.
    Ma H; Bennewitz R
    Beilstein J Nanotechnol; 2022; 13():236-244. PubMed ID: 35281629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creating bulk ultrastable glasses by random particle bonding.
    Ozawa M; Iwashita Y; Kob W; Zamponi F
    Nat Commun; 2023 Jan; 14(1):113. PubMed ID: 36611023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure Analyses of Fe-based Metallic Glasses by Electron Diffraction.
    Hirata A; Hirotsu Y
    Materials (Basel); 2010 Dec; 3(12):5263-5273. PubMed ID: 28883381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural relaxation of vapor-deposited molecular glasses and supercooled liquids.
    Ishii K; Nakayama H
    Phys Chem Chem Phys; 2014 Jun; 16(24):12073-92. PubMed ID: 24828764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films.
    Idrissi H; Ghidelli M; Béché A; Turner S; Gravier S; Blandin JJ; Raskin JP; Schryvers D; Pardoen T
    Sci Rep; 2019 Sep; 9(1):13426. PubMed ID: 31530850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZrCuAg Thin-Film Metallic Glasses: Toward Biostatic Durable Advanced Surfaces.
    Comby-Dassonneville S; Venot T; Borroto A; Longin E; der Loughian C; Ter Ovanessian B; Leroy MA; Pierson JF; Steyer P
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):17062-17074. PubMed ID: 33788535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vapor Condensed and Supercooled Glassy Nanoclusters.
    Qi W; Bowles RK
    ACS Nano; 2016 Mar; 10(3):3416-23. PubMed ID: 26866858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metallic Nanoglasses with Promoted β-Relaxation and Tensile Plasticity.
    Yang Q; Pei CQ; Yu HB; Feng T
    Nano Lett; 2021 Jul; 21(14):6051-6056. PubMed ID: 34240612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shear Softening in a Metallic Glass: First-Principles Local-Stress Analysis.
    Lobzenko I; Shiihara Y; Iwashita T; Egami T
    Phys Rev Lett; 2020 Feb; 124(8):085503. PubMed ID: 32167329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.