BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 34375680)

  • 21. Generation of CAR-T Cells for Cancer Immunotherapy.
    Xu Q; Harto H; Berahovich R; Xu S; Zhou H; Golubovskaya V; Wu L
    Methods Mol Biol; 2019; 1884():349-360. PubMed ID: 30465215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors.
    DeRenzo C; Gottschalk S
    Front Immunol; 2019; 10():218. PubMed ID: 30828333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype.
    Gargett T; Truong N; Ebert LM; Yu W; Brown MP
    Cytotherapy; 2019 Jun; 21(6):593-602. PubMed ID: 30975603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in CAR-T cells therapy for colorectal cancer.
    Qin X; Wu F; Chen C; Li Q
    Front Immunol; 2022; 13():904137. PubMed ID: 36238297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells.
    Darowski D; Kobold S; Jost C; Klein C
    MAbs; 2019; 11(4):621-631. PubMed ID: 30892136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CAR T Cells Generated Using Sleeping Beauty Transposon Vectors and Expanded with an EBV-Transformed Lymphoblastoid Cell Line Display Antitumor Activity In Vitro and In Vivo.
    Chicaybam L; Abdo L; Carneiro M; Peixoto B; Viegas M; de Sousa P; Fornazin MC; Spago MC; Albertoni Laranjeira AB; de Campos-Lima PO; Nowill A; Barros LRC; Bonamino MH
    Hum Gene Ther; 2019 Apr; 30(4):511-522. PubMed ID: 30793967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells.
    Gao Z; Tong C; Wang Y; Chen D; Wu Z; Han W
    J Genet Genomics; 2019 Aug; 46(8):367-377. PubMed ID: 31466926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chimeric antigen receptor T-cell therapy for cancer: a basic research-oriented perspective.
    Han C; Kwon BS
    Immunotherapy; 2018 Mar; 10(3):221-234. PubMed ID: 29370727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic Biology in Chimeric Antigen Receptor T (CAR T) Cell Engineering.
    Zhang C; Zhuang Q; Liu J; Liu X
    ACS Synth Biol; 2022 Jan; 11(1):1-15. PubMed ID: 35005887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting gastrointestinal cancers with chimeric antigen receptor (CAR)-T cell therapy.
    Staudt RE; Carlson RD; Snook AE
    Cancer Biol Ther; 2022 Dec; 23(1):127-133. PubMed ID: 35129050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies.
    Knochelmann HM; Smith AS; Dwyer CJ; Wyatt MM; Mehrotra S; Paulos CM
    Front Immunol; 2018; 9():1740. PubMed ID: 30140266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence.
    Wei W; Chen ZN; Wang K
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAR-T Cell Therapy: Challenges and Optimization.
    Luo M; Zhang H; Zhu L; Xu Q; Gao Q
    Crit Rev Immunol; 2021; 41(1):77-87. PubMed ID: 33822526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Engineering memory-rich CAR-T cells by a piggyBac transposon system].
    Yagyu S
    Rinsho Ketsueki; 2023; 64(5):418-426. PubMed ID: 37271534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the performance of CAR T cell immunotherapies.
    Richardson NH; Luttrell JB; Bryant JS; Chamberlain D; Khawaja S; Neeli I; Radic M
    BMC Biotechnol; 2019 Nov; 19(1):84. PubMed ID: 31783836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preclinical Evaluation of Chimeric Antigen Receptor-Modified T Cells Specific to Epithelial Cell Adhesion Molecule for Treating Colorectal Cancer.
    Zhang BL; Li D; Gong YL; Huang Y; Qin DY; Jiang L; Liang X; Yang X; Gou HF; Wang YS; Wei YQ; Wang W
    Hum Gene Ther; 2019 Apr; 30(4):402-412. PubMed ID: 30693795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RUNX3 improves CAR-T cell phenotype and reduces cytokine release while maintaining CAR-T function.
    Zhu X; Li W; Gao J; Shen J; Xu Y; Zhang C; Qian C
    Med Oncol; 2023 Feb; 40(3):89. PubMed ID: 36735165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.
    Drent E; Poels R; Ruiter R; van de Donk NWCJ; Zweegman S; Yuan H; de Bruijn J; Sadelain M; Lokhorst HM; Groen RWJ; Mutis T; Themeli M
    Clin Cancer Res; 2019 Jul; 25(13):4014-4025. PubMed ID: 30979735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy.
    Nawaz W; Xu S; Li Y; Huang B; Wu X; Wu Z
    Acta Biomater; 2020 Jun; 109():21-36. PubMed ID: 32294554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.