These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34375852)

  • 1. Postural control assessment via Microsoft Azure Kinect DK: An evaluation study.
    Antico M; Balletti N; Laudato G; Lazich A; Notarantonio M; Oliveto R; Ricciardi S; Scalabrino S; Simeone J
    Comput Methods Programs Biomed; 2021 Sep; 209():106324. PubMed ID: 34375852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrist motion assessment using Microsoft Azure Kinect DK: A reliability study in healthy individuals.
    Królikowska A; Maj A; Dejnek M; Prill R; Skotowska-Machaj A; Kołcz A
    Adv Clin Exp Med; 2023 Feb; 32(2):203-209. PubMed ID: 36135819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study.
    Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Azure Kinect and optical retroreflective motion capture for kinematic and spatiotemporal evaluation of the sit-to-stand test.
    Thomas J; Hall JB; Bliss R; Guess TM
    Gait Posture; 2022 May; 94():153-159. PubMed ID: 35334335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azure Kinect performance evaluation for human motion and upper limb biomechanical analysis.
    Brambilla C; Marani R; Romeo L; Lavit Nicora M; Storm FA; Reni G; Malosio M; D'Orazio T; Scano A
    Heliyon; 2023 Nov; 9(11):e21606. PubMed ID: 38027881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agreement between Azure Kinect and Marker-Based Motion Analysis during Functional Movements: A Feasibility Study.
    Jo S; Song S; Kim J; Song C
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway.
    Yeung LF; Cheng KC; Fong CH; Lee WC; Tong KY
    Gait Posture; 2014 Sep; 40(4):532-8. PubMed ID: 25047828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a Kinect V2 based rehabilitation game.
    Ma M; Proffitt R; Skubic M
    PLoS One; 2018; 13(8):e0202338. PubMed ID: 30142631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the Processing Mode Influences Azure Kinect Body Tracking Results.
    Büker L; Quinten V; Hackbarth M; Hellmers S; Diekmann R; Hein A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.
    Xu X; McGorry RW
    Appl Ergon; 2015 Jul; 49():47-54. PubMed ID: 25766422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture.
    Guess TM; Bliss R; Hall JB; Kiselica AM
    Gait Posture; 2022 Jul; 96():130-136. PubMed ID: 35635988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate estimation of joint motion trajectories for rehabilitation using Kinect.
    Sinha S; Bhowmick B; Sinha A; Das A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3864-3867. PubMed ID: 29060741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function.
    Otte K; Kayser B; Mansow-Model S; Verrel J; Paul F; Brandt AU; Schmitz-Hübsch T
    PLoS One; 2016; 11(11):e0166532. PubMed ID: 27861541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent Validity of a Custom Method for Markerless 3D Full-Body Motion Tracking of Children and Young Adults Based on a Single RGB-D Camera.
    Hesse N; Baumgartner S; Gut A; van Hedel HJA
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1943-1951. PubMed ID: 37028016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control.
    Clark RA; Pua YH; Oliveira CC; Bower KJ; Thilarajah S; McGaw R; Hasanki K; Mentiplay BF
    Gait Posture; 2015 Jul; 42(2):210-3. PubMed ID: 26009500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function.
    Bertram J; Krüger T; Röhling HM; Jelusic A; Mansow-Model S; Schniepp R; Wuehr M; Otte K
    PLoS One; 2023; 18(1):e0279697. PubMed ID: 36701322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Accuracy of the Azure Kinect and Kinect v2.
    Kurillo G; Hemingway E; Cheng ML; Cheng L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinect-based assessment of lower limb kinematics and dynamic postural control during the star excursion balance test.
    Eltoukhy M; Kuenze C; Oh J; Wooten S; Signorile J
    Gait Posture; 2017 Oct; 58():421-427. PubMed ID: 28910654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.