These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1427 related articles for article (PubMed ID: 34375901)
21. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain. Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P Elife; 2021 Jan; 10():. PubMed ID: 33459255 [TBL] [Abstract][Full Text] [Related]
22. Deep learning-based framework for slide-based histopathological image analysis. Kosaraju S; Park J; Lee H; Yang JW; Kang M Sci Rep; 2022 Nov; 12(1):19075. PubMed ID: 36351997 [TBL] [Abstract][Full Text] [Related]
23. Deep contrastive learning based tissue clustering for annotation-free histopathology image analysis. Yan J; Chen H; Li X; Yao J Comput Med Imaging Graph; 2022 Apr; 97():102053. PubMed ID: 35306442 [TBL] [Abstract][Full Text] [Related]
24. Tumor Segmentation in Intraoperative Fluorescence Images Based on Transfer Learning and Convolutional Neural Networks. Hou W; Zou L; Wang D Surg Innov; 2024 Jun; 31(3):291-306. PubMed ID: 38619039 [TBL] [Abstract][Full Text] [Related]
25. Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study. Yang H; Chen L; Cheng Z; Yang M; Wang J; Lin C; Wang Y; Huang L; Chen Y; Peng S; Ke Z; Li W BMC Med; 2021 Mar; 19(1):80. PubMed ID: 33775248 [TBL] [Abstract][Full Text] [Related]
26. Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Xie J; Liu R; Luttrell J; Zhang C Front Genet; 2019; 10():80. PubMed ID: 30838023 [TBL] [Abstract][Full Text] [Related]
27. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139 [TBL] [Abstract][Full Text] [Related]
28. AI-driven deep convolutional neural networks for chest X-ray pathology identification. Albahli S; Ahmad Hassan Yar GN J Xray Sci Technol; 2022; 30(2):365-376. PubMed ID: 35068415 [TBL] [Abstract][Full Text] [Related]
29. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Al-Masni MA; Kim DH; Kim TS Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084 [TBL] [Abstract][Full Text] [Related]
30. Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis. Kosaraju SC; Hao J; Koh HM; Kang M Methods; 2020 Jul; 179():3-13. PubMed ID: 32442672 [TBL] [Abstract][Full Text] [Related]
31. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images. Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226 [TBL] [Abstract][Full Text] [Related]
32. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Iizuka O; Kanavati F; Kato K; Rambeau M; Arihiro K; Tsuneki M Sci Rep; 2020 Jan; 10(1):1504. PubMed ID: 32001752 [TBL] [Abstract][Full Text] [Related]
33. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Khameneh FD; Razavi S; Kamasak M Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391 [TBL] [Abstract][Full Text] [Related]
34. Color-CADx: a deep learning approach for colorectal cancer classification through triple convolutional neural networks and discrete cosine transform. Sharkas M; Attallah O Sci Rep; 2024 Mar; 14(1):6914. PubMed ID: 38519513 [TBL] [Abstract][Full Text] [Related]
35. A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Laves MH; Bicker J; Kahrs LA; Ortmaier T Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):483-492. PubMed ID: 30649670 [TBL] [Abstract][Full Text] [Related]
36. Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network. Jiang YQ; Xiong JH; Li HY; Yang XH; Yu WT; Gao M; Zhao X; Ma YP; Zhang W; Guan YF; Gu H; Sun JF Br J Dermatol; 2020 Mar; 182(3):754-762. PubMed ID: 31017653 [TBL] [Abstract][Full Text] [Related]
37. Deep computational pathology in breast cancer. Duggento A; Conti A; Mauriello A; Guerrisi M; Toschi N Semin Cancer Biol; 2021 Jul; 72():226-237. PubMed ID: 32818626 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation. Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615 [TBL] [Abstract][Full Text] [Related]
39. FEEDNet: a feature enhanced encoder-decoder LSTM network for nuclei instance segmentation for histopathological diagnosis. Deshmukh G; Susladkar O; Makwana D; Chandra Teja R S; Kumar S N; Mittal S Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 35905732 [No Abstract] [Full Text] [Related]
40. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images. Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]