These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34375931)
1. Presence of polyethylene terephthalate (PET) fibers in hyporheic zone alters colonization patterns and seasonal dynamics of biofilm metabolic functioning. Matjašič T; Simčič T; Kanduč T; Samardžija Z; Mori N Water Res; 2021 Sep; 203():117455. PubMed ID: 34375931 [TBL] [Abstract][Full Text] [Related]
2. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318 [TBL] [Abstract][Full Text] [Related]
3. Modelling the effects of multiple stressors on respiration and microbial biomass in the hyporheic zone using decision trees. Mori N; Debeljak B; Škerjanec M; Simčič T; Kanduč T; Brancelj A Water Res; 2019 Feb; 149():9-20. PubMed ID: 30415026 [TBL] [Abstract][Full Text] [Related]
4. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris. Oberbeckmann S; Osborn AM; Duhaime MB PLoS One; 2016; 11(8):e0159289. PubMed ID: 27487037 [TBL] [Abstract][Full Text] [Related]
5. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. Miao L; Yu Y; Adyel TM; Wang C; Liu Z; Liu S; Huang L; You G; Meng M; Qu H; Hou J J Hazard Mater; 2021 Feb; 403():123577. PubMed ID: 32795819 [TBL] [Abstract][Full Text] [Related]
6. Microbial carbon metabolic functions of biofilms on plastic debris influenced by the substrate types and environmental factors. Miao L; Wang C; Adyel TM; Wu J; Liu Z; You G; Meng M; Qu H; Huang L; Yu Y; Hou J Environ Int; 2020 Oct; 143():106007. PubMed ID: 32763634 [TBL] [Abstract][Full Text] [Related]
7. Diversity and structure of microbial biofilms on microplastics in riverine waters of the Pearl River Delta, China. Yang G; Gong M; Mai L; Zhuang L; Zeng EY Chemosphere; 2021 Jun; 272():129870. PubMed ID: 33607493 [TBL] [Abstract][Full Text] [Related]
8. Effects of plastisphere on phosphorus availability in freshwater system: Critical roles of polymer type and colonizing habitat. Song X; Ding J; Tian W; Xu H; Zou H; Wang Z Sci Total Environ; 2023 Apr; 870():161990. PubMed ID: 36737019 [TBL] [Abstract][Full Text] [Related]
9. Effects of boundary hydraulics, dissolved oxygen, and dissolved organic carbon on growth and death dynamics of aerobic microbes in riverbed dune-induced hyporheic zones. Monterroso H; Widdowson MA; Lotts WS; Strom KB; Hester ET Sci Total Environ; 2024 Jan; 906():167401. PubMed ID: 37769729 [TBL] [Abstract][Full Text] [Related]
10. Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of the western United States. Feris KP; Ramsey PW; Frazar C; Rillig MC; Gannon JE; Holben WE Microb Ecol; 2003 Aug; 46(2):200-15. PubMed ID: 14708745 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Microplastic-Associated Biofilm Development along a Freshwater-Estuarine Gradient. Qiang L; Cheng J; Mirzoyan S; Kerkhof LJ; Häggblom MM Environ Sci Technol; 2021 Dec; 55(24):16402-16412. PubMed ID: 34846850 [TBL] [Abstract][Full Text] [Related]
12. Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Feris KP; Ramsey PW; Frazar C; Rillig M; Moore JN; Gannon JE; Holben WE Appl Environ Microbiol; 2004 Apr; 70(4):2323-31. PubMed ID: 15066828 [TBL] [Abstract][Full Text] [Related]
13. Integrated numerical modeling to quantify transport and fate of microplastics in the hyporheic zone. Dichgans F; Boos JP; Ahmadi P; Frei S; Fleckenstein JH Water Res; 2023 Sep; 243():120349. PubMed ID: 37482004 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025 [TBL] [Abstract][Full Text] [Related]
15. Investigations on microplastic infiltration within natural riverbed sediments. Mancini M; Francalanci S; Innocenti L; Solari L Sci Total Environ; 2023 Dec; 904():167256. PubMed ID: 37741401 [TBL] [Abstract][Full Text] [Related]
16. Functional and structural responses of hyporheic biofilms to varying sources of dissolved organic matter. Wagner K; Bengtsson MM; Besemer K; Sieczko A; Burns NR; Herberg ER; Battin TJ Appl Environ Microbiol; 2014 Oct; 80(19):6004-12. PubMed ID: 25063654 [TBL] [Abstract][Full Text] [Related]
17. Effects of biofilm colonization on the sinking of microplastics in three freshwater environments. Miao L; Gao Y; Adyel TM; Huo Z; Liu Z; Wu J; Hou J J Hazard Mater; 2021 Jul; 413():125370. PubMed ID: 33609862 [TBL] [Abstract][Full Text] [Related]
18. Biofilms on plastic litter in an urban river: Community composition and activity vary by substrate type. Lazcano RF; Kelly JJ; Hoellein TJ Water Environ Res; 2024 Mar; 96(3):e11008. PubMed ID: 38443318 [TBL] [Abstract][Full Text] [Related]
19. Biofilm influenced metal accumulation onto plastic debris in different freshwaters. Liu Z; Adyel TM; Miao L; You G; Liu S; Hou J Environ Pollut; 2021 Sep; 285():117646. PubMed ID: 34380227 [TBL] [Abstract][Full Text] [Related]
20. Diffuse reflectance spectroscopy (DRS) and infrared (IR) measurements for studying biofilm formation on common plastic litter polymer (LDPE and PET) surfaces in three different laboratory aquatic environments. Tziourrou P; Vakros J; Karapanagioti HK Environ Sci Pollut Res Int; 2023 May; 30(25):67499-67512. PubMed ID: 37115440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]