These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 34375955)
1. UNet retinal blood vessel segmentation algorithm based on improved pyramid pooling method and attention mechanism. Du XF; Wang JS; Sun WZ Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34375955 [TBL] [Abstract][Full Text] [Related]
2. Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction. Du X; Wang J; Sun W Med Phys; 2021 Jul; 48(7):3827-3841. PubMed ID: 34028030 [TBL] [Abstract][Full Text] [Related]
3. PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation. Chen D; Yang W; Wang L; Tan S; Lin J; Bu W PLoS One; 2022; 17(1):e0262689. PubMed ID: 35073371 [TBL] [Abstract][Full Text] [Related]
4. Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation. Liu C; Gu P; Xiao Z J Healthc Eng; 2022; 2022():5188362. PubMed ID: 35047151 [TBL] [Abstract][Full Text] [Related]
5. MC-UNet: Multimodule Concatenation Based on U-Shape Network for Retinal Blood Vessels Segmentation. Li J; Zhang T; Zhao Y; Chen N; Zhou H; Xu H; Guan Z; Xue L; Yang C; Chen R; Wei L Comput Intell Neurosci; 2022; 2022():9917691. PubMed ID: 36387767 [TBL] [Abstract][Full Text] [Related]
6. Lightweight pyramid network with spatial attention mechanism for accurate retinal vessel segmentation. Tan T; Wang Z; Du H; Xu J; Qiu B Int J Comput Assist Radiol Surg; 2021 Apr; 16(4):673-682. PubMed ID: 33751370 [TBL] [Abstract][Full Text] [Related]
7. An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation. Ma Z; Li X Comput Biol Med; 2024 Jan; 168():107770. PubMed ID: 38056215 [TBL] [Abstract][Full Text] [Related]
8. Retinal blood vessel segmentation based on Densely Connected U-Net. Cheng YL; Ma MN; Zhang LJ; Jin CJ; Ma L; Zhou Y Math Biosci Eng; 2020 Apr; 17(4):3088-3108. PubMed ID: 32987518 [TBL] [Abstract][Full Text] [Related]
9. Fusion network based on the dual attention mechanism and atrous spatial pyramid pooling for automatic segmentation in retinal vessel images. Liang B; Tang C; Xu M; Wu T; Lei Z J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1393-1402. PubMed ID: 36215583 [TBL] [Abstract][Full Text] [Related]
10. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation. Li D; Rahardja S Comput Methods Programs Biomed; 2021 Jun; 205():106070. PubMed ID: 33857703 [TBL] [Abstract][Full Text] [Related]
11. Accurate Retinal Vessel Segmentation in Color Fundus Images via Fully Attention-Based Networks. Li K; Qi X; Luo Y; Yao Z; Zhou X; Sun M IEEE J Biomed Health Inform; 2021 Jun; 25(6):2071-2081. PubMed ID: 33001809 [TBL] [Abstract][Full Text] [Related]
12. TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method. Li C; Li Z; Liu W Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38052089 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Rong Y; Xiong Y; Li C; Chen Y; Wei P; Wei C; Fan Z Med Biol Eng Comput; 2023 Jul; 61(7):1745-1755. PubMed ID: 36899285 [TBL] [Abstract][Full Text] [Related]
14. U-shaped Retinal Vessel Segmentation Based on Adaptive Aggregation of Feature Information. Liang L; Feng J; Zhou L; Yin J; Sheng X Interdiscip Sci; 2022 Jun; 14(2):623-637. PubMed ID: 35486313 [TBL] [Abstract][Full Text] [Related]
15. Retinal vessel segmentation method based on RSP-SA Unet network. Sun K; Chen Y; Dong F; Wu Q; Geng J; Chen Y Med Biol Eng Comput; 2024 Feb; 62(2):605-620. PubMed ID: 37964177 [TBL] [Abstract][Full Text] [Related]
17. MFI-Net: Multiscale Feature Interaction Network for Retinal Vessel Segmentation. Ye Y; Pan C; Wu Y; Wang S; Xia Y IEEE J Biomed Health Inform; 2022 Sep; 26(9):4551-4562. PubMed ID: 35696471 [TBL] [Abstract][Full Text] [Related]
18. LMBiS-Net: A lightweight bidirectional skip connection based multipath CNN for retinal blood vessel segmentation. Matloob Abbasi M; Iqbal S; Aurangzeb K; Alhussein M; Khan TM Sci Rep; 2024 Jul; 14(1):15219. PubMed ID: 38956117 [TBL] [Abstract][Full Text] [Related]
19. CSU-Net: A Context Spatial U-Net for Accurate Blood Vessel Segmentation in Fundus Images. Wang B; Wang S; Qiu S; Wei W; Wang H; He H IEEE J Biomed Health Inform; 2021 Apr; 25(4):1128-1138. PubMed ID: 32750968 [TBL] [Abstract][Full Text] [Related]
20. Gated Skip-Connection Network with Adaptive Upsampling for Retinal Vessel Segmentation. Jiang Y; Yao H; Tao S; Liang J Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]