BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 34376154)

  • 21. Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA.
    König S; Yang Z; Wandall HH; Mussolino C; Bennett EP
    Methods Mol Biol; 2019; 1961():45-66. PubMed ID: 30912039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Genome Editing in Apple Using a CRISPR/Cas9 system.
    Nishitani C; Hirai N; Komori S; Wada M; Okada K; Osakabe K; Yamamoto T; Osakabe Y
    Sci Rep; 2016 Aug; 6():31481. PubMed ID: 27530958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes.
    Liang Z; Chen K; Li T; Zhang Y; Wang Y; Zhao Q; Liu J; Zhang H; Liu C; Ran Y; Gao C
    Nat Commun; 2017 Jan; 8():14261. PubMed ID: 28098143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic Mineralization-Based CRISPR/Cas9 Ribonucleoprotein Nanoparticles for Gene Editing.
    Li S; Song Z; Liu C; Chen XL; Han H
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47762-47770. PubMed ID: 31773942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cationic lipid nanoparticle-mediated delivery of a Cas9/crRNA ribonucleoprotein complex for transgene-free editing of the citrus plant genome.
    Mahmoud LM; Dutt M
    Plant Cell Rep; 2024 Jun; 43(7):171. PubMed ID: 38874819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9 mediated high efficiency knockout of the eye color gene Vermillion in Helicoverpa zea (Boddie).
    Perera OP; Little NS; Pierce CA
    PLoS One; 2018; 13(5):e0197567. PubMed ID: 29771955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing via delivery of Cas9 ribonucleoprotein.
    DeWitt MA; Corn JE; Carroll D
    Methods; 2017 May; 121-122():9-15. PubMed ID: 28410976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of CRISPR/Cas9 system and the preferred no-indel end-joining repair in tardigrades.
    Kumagai H; Kondo K; Kunieda T
    Biochem Biophys Res Commun; 2022 Oct; 623():196-201. PubMed ID: 35926276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Cas9 activity by specific modifications of the tracrRNA.
    Scott T; Urak R; Soemardy C; Morris KV
    Sci Rep; 2019 Nov; 9(1):16104. PubMed ID: 31695072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sonication-assisted whisker method enables CRISPR-Cas9 ribonucleoprotein delivery to induce genome editing in rice.
    Nakamura A; Yano T; Mitsuda N; Furubayashi M; Ito S; Sugano SS; Terakawa T
    Sci Rep; 2023 Sep; 13(1):14205. PubMed ID: 37679413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery.
    Andersson M; Turesson H; Olsson N; Fält AS; Ohlsson P; Gonzalez MN; Samuelsson M; Hofvander P
    Physiol Plant; 2018 Dec; 164(4):378-384. PubMed ID: 29572864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice.
    Tang X; Liu G; Zhou J; Ren Q; You Q; Tian L; Xin X; Zhong Z; Liu B; Zheng X; Zhang D; Malzahn A; Gong Z; Qi Y; Zhang T; Zhang Y
    Genome Biol; 2018 Jul; 19(1):84. PubMed ID: 29973285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms.
    Farboud B; Jarvis E; Roth TL; Shin J; Corn JE; Marson A; Meyer BJ; Patel NH; Hochstrasser ML
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome Editing in Chlamydomonas reinhardtii Using Cas9-gRNA Ribonucleoprotein Complex: A Step-by-Step Guide.
    Dhokane D; Kancharla N; Savarimuthu A; Bhadra B; Bandyopadhyay A; Dasgupta S
    Methods Mol Biol; 2023; 2653():207-217. PubMed ID: 36995629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba.
    Triozzi PM; Schmidt HW; Dervinis C; Kirst M; Conde D
    Tree Physiol; 2021 Nov; 41(11):2216-2227. PubMed ID: 33960379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.