These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34376217)

  • 1. INGOT-DR: an interpretable classifier for predicting drug resistance in M. tuberculosis.
    Zabeti H; Dexter N; Safari AH; Sedaghat N; Libbrecht M; Chindelevitch L
    Algorithms Mol Biol; 2021 Aug; 16(1):17. PubMed ID: 34376217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction.
    Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M
    EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R.ROSETTA: an interpretable machine learning framework.
    Garbulowski M; Diamanti K; Smolińska K; Baltzer N; Stoll P; Bornelöv S; Øhrn A; Feuk L; Komorowski J
    BMC Bioinformatics; 2021 Mar; 22(1):110. PubMed ID: 33676405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An explainable machine learning platform for pyrazinamide resistance prediction and genetic feature identification of Mycobacterium tuberculosis.
    Zhang A; Teng L; Alterovitz G
    J Am Med Inform Assoc; 2021 Mar; 28(3):533-540. PubMed ID: 33215194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MIDGET:Detecting differential gene expression on microarray data.
    Angelescu R; Dobrescu R
    Comput Methods Programs Biomed; 2021 Nov; 211():106418. PubMed ID: 34555591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning of material properties: Predictive and interpretable multilinear models.
    Allen AEA; Tkatchenko A
    Sci Adv; 2022 May; 8(18):eabm7185. PubMed ID: 35522750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy.
    Lenhof K; Gerstner N; Kehl T; Eckhart L; Schneider L; Lenhof HP
    Bioinformatics; 2021 Nov; 37(21):3881-3888. PubMed ID: 34352075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive and interpretable models via the stacked elastic net.
    Rauschenberger A; Glaab E; van de Wiel MA
    Bioinformatics; 2021 Aug; 37(14):2012-2016. PubMed ID: 32437519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable Decision Sets: A Joint Framework for Description and Prediction.
    Lakkaraju H; Bach SH; Jure L
    KDD; 2016 Aug; 2016():1675-1684. PubMed ID: 27853627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pygenprop: a Python library for programmatic exploration and comparison of organism genome properties.
    Bergstrand LH; Neufeld JD; Doxey AC
    Bioinformatics; 2019 Dec; 35(23):5063-5065. PubMed ID: 31240307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
    Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M
    Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the pitfalls of automatic interpretation of whole genome sequencing data by online tools for the prediction of pyrazinamide resistance in Mycobacterium tuberculosis.
    Iwamoto T; Murase Y; Yoshida S; Aono A; Kuroda M; Sekizuka T; Yamashita A; Kato K; Takii T; Arikawa K; Kato S; Mitarai S
    PLoS One; 2019; 14(2):e0212798. PubMed ID: 30817803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches.
    Tarekegn A; Ricceri F; Costa G; Ferracin E; Giacobini M
    JMIR Med Inform; 2020 Jun; 8(6):e16678. PubMed ID: 32442149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons.
    Drouin A; Giguère S; Déraspe M; Marchand M; Tyers M; Loo VG; Bourgault AM; Laviolette F; Corbeil J
    BMC Genomics; 2016 Sep; 17(1):754. PubMed ID: 27671088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method.
    Chowdhury AS; Khaledian E; Broschat SL
    J Appl Microbiol; 2019 Dec; 127(6):1656-1664. PubMed ID: 31419358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Machine Learning Models for Predicting Antimicrobial Resistance of
    Liu Z; Deng D; Lu H; Sun J; Lv L; Li S; Peng G; Ma X; Li J; Li Z; Rong T; Wang G
    Front Microbiol; 2020; 11():48. PubMed ID: 32117101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Analysis of MDR and XDR Tuberculosis from Belarus: Machine-Learning Approach.
    Sergeev RS; Kavaliou IS; Sataneuski UV; Gabrielian A; Rosenthal A; Tartakovsky M; Tuzikov AV
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1398-1408. PubMed ID: 28678713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interpretable machine learning approach to identify mechanism of action of antibiotics.
    Mongia M; Guler M; Mohimani H
    Sci Rep; 2022 Jun; 12(1):10342. PubMed ID: 35725893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.