These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34376217)

  • 21. Evaluation of Machine Learning Models for Predicting Antimicrobial Resistance of
    Liu Z; Deng D; Lu H; Sun J; Lv L; Li S; Peng G; Ma X; Li J; Li Z; Rong T; Wang G
    Front Microbiol; 2020; 11():48. PubMed ID: 32117101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Analysis of MDR and XDR Tuberculosis from Belarus: Machine-Learning Approach.
    Sergeev RS; Kavaliou IS; Sataneuski UV; Gabrielian A; Rosenthal A; Tartakovsky M; Tuzikov AV
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1398-1408. PubMed ID: 28678713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the interpretability of machine learning-based model for predicting hypertension.
    Elshawi R; Al-Mallah MH; Sakr S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):146. PubMed ID: 31357998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An interpretable machine learning approach to identify mechanism of action of antibiotics.
    Mongia M; Guler M; Mohimani H
    Sci Rep; 2022 Jun; 12(1):10342. PubMed ID: 35725893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building more accurate decision trees with the additive tree.
    Luna JM; Gennatas ED; Ungar LH; Eaton E; Diffenderfer ES; Jensen ST; Simone CB; Friedman JH; Solberg TD; Valdes G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19887-19893. PubMed ID: 31527280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A large scale evaluation of TBProfiler and Mykrobe for antibiotic resistance prediction in
    Mahé P; El Azami M; Barlas P; Tournoud M
    PeerJ; 2019; 7():e6857. PubMed ID: 31106066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TB-ML-a framework for comparing machine learning approaches to predict drug resistance of
    Libiseller-Egger J; Wang L; Deelder W; Campino S; Clark TG; Phelan JE
    Bioinform Adv; 2023; 3(1):vbad040. PubMed ID: 37033466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpretable genotype-to-phenotype classifiers with performance guarantees.
    Drouin A; Letarte G; Raymond F; Marchand M; Corbeil J; Laviolette F
    Sci Rep; 2019 Mar; 9(1):4071. PubMed ID: 30858411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of machine learning techniques to tuberculosis drug resistance analysis.
    Kouchaki S; Yang Y; Walker TM; Sarah Walker A; Wilson DJ; Peto TEA; Crook DW; ; Clifton DA
    Bioinformatics; 2019 Jul; 35(13):2276-2282. PubMed ID: 30462147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling.
    Luo Y; Tseng HH; Cui S; Wei L; Ten Haken RK; El Naqa I
    BJR Open; 2019; 1(1):20190021. PubMed ID: 33178948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new approach for interpretability and reliability in clinical risk prediction: Acute coronary syndrome scenario.
    Valente F; Henriques J; Paredes S; Rocha T; de Carvalho P; Morais J
    Artif Intell Med; 2021 Jul; 117():102113. PubMed ID: 34127242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States.
    Ren X; Mi Z; Georgopoulos PG
    Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of Mycobacterium tuberculosis in New York State.
    Shea J; Halse TA; Lapierre P; Shudt M; Kohlerschmidt D; Van Roey P; Limberger R; Taylor J; Escuyer V; Musser KA
    J Clin Microbiol; 2017 Jun; 55(6):1871-1882. PubMed ID: 28381603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An interpretable risk prediction model for healthcare with pattern attention.
    Kamal SA; Yin C; Qian B; Zhang P
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):307. PubMed ID: 33380322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generalized Read-Across prediction using genra-py.
    Shah I; Tate T; Patlewicz G
    Bioinformatics; 2021 Oct; 37(19):3380-3381. PubMed ID: 33772575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning From Limited Data: Towards Best Practice Techniques for Antimicrobial Resistance Prediction From Whole Genome Sequencing Data.
    Lüftinger L; Májek P; Beisken S; Rattei T; Posch AE
    Front Cell Infect Microbiol; 2021; 11():610348. PubMed ID: 33659219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Spatial-Temporal Interpretable Deep Learning Model for improving interpretability and predictive accuracy of satellite-based PM
    Yan X; Zang Z; Jiang Y; Shi W; Guo Y; Li D; Zhao C; Husi L
    Environ Pollut; 2021 Jan; 273():116459. PubMed ID: 33465651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physician-Friendly Machine Learning: A Case Study with Cardiovascular Disease Risk Prediction.
    Padmanabhan M; Yuan P; Chada G; Nguyen HV
    J Clin Med; 2019 Jul; 8(7):. PubMed ID: 31323843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data.
    Thain N; Le C; Crossa A; Ahuja SD; Meissner JS; Mathema B; Kreiswirth B; Kurepina N; Cohen T; Chindelevitch L
    Infect Genet Evol; 2019 Aug; 72():59-66. PubMed ID: 29960078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.