BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34376223)

  • 1. SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3' tag-based RNA-seq of single cells.
    Li GW; Nan F; Yuan GH; Liu CX; Liu X; Chen LL; Tian B; Yang L
    Genome Biol; 2021 Aug; 22(1):221. PubMed ID: 34376223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scAPAtrap: identification and quantification of alternative polyadenylation sites from single-cell RNA-seq data.
    Wu X; Liu T; Ye C; Ye W; Ji G
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33142319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scDAPA: detection and visualization of dynamic alternative polyadenylation from single cell RNA-seq data.
    Ye C; Zhou Q; Wu X; Yu C; Ji G; Saban DR; Li QQ
    Bioinformatics; 2020 Feb; 36(4):1262-1264. PubMed ID: 31557285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PolyAMiner-Bulk is a deep learning-based algorithm that decodes alternative polyadenylation dynamics from bulk RNA-seq data.
    Jonnakuti VS; Wagner EJ; Maletić-Savatić M; Liu Z; Yalamanchili HK
    Cell Rep Methods; 2024 Feb; 4(2):100707. PubMed ID: 38325383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate transcriptome-wide identification and quantification of alternative polyadenylation from RNA-seq data with APAIQ.
    Long Y; Zhang B; Tian S; Chan JJ; Zhou J; Li Z; Li Y; An Z; Liao X; Wang Y; Sun S; Xu Y; Tay Y; Chen W; Gao X
    Genome Res; 2023 Apr; 33(4):644-657. PubMed ID: 37117035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq.
    Ye W; Lian Q; Ye C; Wu X
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):67-83. PubMed ID: 36167284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APA-Scan: detection and visualization of 3'-UTR alternative polyadenylation with RNA-seq and 3'-end-seq data.
    Fahmi NA; Ahmed KT; Chang JW; Nassereddeen H; Fan D; Yong J; Zhang W
    BMC Bioinformatics; 2022 Sep; 23(Suppl 3):396. PubMed ID: 36171568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of alternative polyadenylation from single-cell RNA-seq using scDaPars reveals cell subpopulations invisible to gene expression.
    Gao Y; Li L; Amos CI; Li W
    Genome Res; 2021 Oct; 31(10):1856-1866. PubMed ID: 34035046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data.
    Gao Y; Li W
    Methods Enzymol; 2021; 655():225-243. PubMed ID: 34183123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell alternative polyadenylation analysis delineates GABAergic neuron types.
    Yang Y; Paul A; Bach TN; Huang ZJ; Zhang MQ
    BMC Biol; 2021 Jul; 19(1):144. PubMed ID: 34301239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sierra: discovery of differential transcript usage from polyA-captured single-cell RNA-seq data.
    Patrick R; Humphreys DT; Janbandhu V; Oshlack A; Ho JWK; Harvey RP; Lo KK
    Genome Biol; 2020 Jul; 21(1):167. PubMed ID: 32641141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.
    Brendel M; Su C; Bai Z; Zhang H; Elemento O; Wang F
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):814-835. PubMed ID: 36528240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scAPAmod: Profiling Alternative Polyadenylation Modalities in Single Cells from Single-Cell RNA-Seq Data.
    Qian L; Fu H; Mou Y; Lin W; Ye L; Ji G
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking sequencing methods and tools that facilitate the study of alternative polyadenylation.
    Shah A; Mittleman BE; Gilad Y; Li YI
    Genome Biol; 2021 Oct; 22(1):291. PubMed ID: 34649612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scAPAdb: a comprehensive database of alternative polyadenylation at single-cell resolution.
    Zhu S; Lian Q; Ye W; Qin W; Wu Z; Ji G; Wu X
    Nucleic Acids Res; 2022 Jan; 50(D1):D365-D370. PubMed ID: 34508354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq.
    Meyer E; Chaung K; Dehghannasiri R; Salzman J
    Genome Biol; 2022 Oct; 23(1):226. PubMed ID: 36284317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation.
    Bogard N; Linder J; Rosenberg AB; Seelig G
    Cell; 2019 Jun; 178(1):91-106.e23. PubMed ID: 31178116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data.
    Shulman ED; Elkon R
    Nucleic Acids Res; 2019 Nov; 47(19):10027-10039. PubMed ID: 31501864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing.
    Cohen P; DeGrace EJ; Danziger O; Patel RS; Barrall EA; Bobrowski T; Kehrer T; Cupic A; Miorin L; García-Sastre A; Rosenberg BR
    Microbiol Spectr; 2023 Sep; 11(5):e0077623. PubMed ID: 37676044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyadenylation sites and their characteristics in the genome of channel catfish (Ictalurus punctatus) as revealed by using RNA-Seq data.
    Tan S; Wang W; Zhou T; Yang Y; Gao D; Dunham R; Liu Z
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():248-255. PubMed ID: 30952021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.