These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34376230)
1. Data of bacterial community dynamics resulting from total rumen content exchange in beef cattle. Clemmons BA; Henniger MT; Myer PR BMC Res Notes; 2021 Aug; 14(1):308. PubMed ID: 34376230 [TBL] [Abstract][Full Text] [Related]
2. The bovine epimural microbiota displays compositional and structural heterogeneity across different ruminal locations. Sbardellati DL; Fischer A; Cox MS; Li W; Kalscheur KF; Suen G J Dairy Sci; 2020 Apr; 103(4):3636-3647. PubMed ID: 32057427 [TBL] [Abstract][Full Text] [Related]
3. Assessing the Response of Ruminal Bacterial and Fungal Microbiota to Whole-Rumen Contents Exchange in Dairy Cows. Cox MS; Deblois CL; Suen G Front Microbiol; 2021; 12():665776. PubMed ID: 34140943 [TBL] [Abstract][Full Text] [Related]
4. Changes in Microbiota in Rumen Digesta and Feces Due to a Grain-Based Subacute Ruminal Acidosis (SARA) Challenge. Plaizier JC; Li S; Danscher AM; Derakshani H; Andersen PH; Khafipour E Microb Ecol; 2017 Aug; 74(2):485-495. PubMed ID: 28175972 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of the bacterial communities throughout the gastrointestinal tract in two beef cattle breeds. Zhu Y; Wang Z; Hu R; Wang X; Li F; Zhang X; Zou H; Peng Q; Xue B; Wang L Appl Microbiol Biotechnol; 2021 Jan; 105(1):313-325. PubMed ID: 33201274 [TBL] [Abstract][Full Text] [Related]
6. Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Neves ALA; Chen Y; Lê Cao KA; Mandal S; Sharpton TJ; McAllister T; Guan LL Animal; 2020 Apr; 14(4):731-744. PubMed ID: 31662129 [TBL] [Abstract][Full Text] [Related]
7. Metatranscriptomic Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef Cattle. Li F; Guan LL Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235871 [TBL] [Abstract][Full Text] [Related]
8. Effect of Propionibacterium acidipropionici P169 on the rumen and faecal microbiota of beef cattle fed a maize-based finishing diet. Azad E; Narvaez N; Derakhshani H; Allazeh AY; Wang Y; McAllister TA; Khafipour E Benef Microbes; 2017 Oct; 8(5):785-799. PubMed ID: 28856906 [TBL] [Abstract][Full Text] [Related]
9. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Petri RM; Schwaiger T; Penner GB; Beauchemin KA; Forster RJ; McKinnon JJ; McAllister TA Appl Environ Microbiol; 2013 Jun; 79(12):3744-55. PubMed ID: 23584771 [TBL] [Abstract][Full Text] [Related]
11. Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows. Wang Y; Nan X; Zhao Y; Wang Y; Jiang L; Xiong B Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097510 [TBL] [Abstract][Full Text] [Related]
12. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period. Zhu Z; Noel SJ; Difford GF; Al-Soud WA; Brejnrod A; Sørensen SJ; Lassen J; Løvendahl P; Højberg O PLoS One; 2017; 12(11):e0187858. PubMed ID: 29117259 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. Petri RM; Schwaiger T; Penner GB; Beauchemin KA; Forster RJ; McKinnon JJ; McAllister TA PLoS One; 2013; 8(12):e83424. PubMed ID: 24391765 [TBL] [Abstract][Full Text] [Related]
14. Influence of a sodium-saccharin sweetener on the rumen content and rumen epithelium microbiota in dairy cattle during heat stress. Koester LR; Hayman K; Anderson CJ; Tibbs-Cortes BW; Daniels KM; Seggerman FM; Gorden PJ; Lyte M; Schmitz-Esser S J Anim Sci; 2023 Jan; 101():. PubMed ID: 36511453 [TBL] [Abstract][Full Text] [Related]
15. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Fonseca PAS; Lam S; Chen Y; Waters SM; Guan LL; Cánovas A Sci Rep; 2023 Sep; 13(1):16209. PubMed ID: 37758745 [TBL] [Abstract][Full Text] [Related]
16. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high- and low-efficiency Holstein cows. Weimer PJ; Cox MS; Vieira de Paula T; Lin M; Hall MB; Suen G J Dairy Sci; 2017 Sep; 100(9):7165-7182. PubMed ID: 28690067 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. Myer PR; Kim M; Freetly HC; Smith TPL J Microbiol Methods; 2016 Aug; 127():132-140. PubMed ID: 27282101 [TBL] [Abstract][Full Text] [Related]
18. Age-dependent variations in rumen bacterial community of Mongolian cattle from weaning to adulthood. Ahmad AA; Zhang J; Liang Z; Du M; Yang Y; Zheng J; Yan P; Long R; Tong B; Han J; Ding X BMC Microbiol; 2022 Sep; 22(1):213. PubMed ID: 36071396 [TBL] [Abstract][Full Text] [Related]
19. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. Wetzels SU; Mann E; Pourazad P; Qumar M; Pinior B; Metzler-Zebeli BU; Wagner M; Schmitz-Esser S; Zebeli Q J Dairy Sci; 2017 Mar; 100(3):1829-1844. PubMed ID: 28041738 [TBL] [Abstract][Full Text] [Related]
20. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. Pitta DW; Indugu N; Vecchiarelli B; Rico DE; Harvatine KJ J Dairy Sci; 2018 Jan; 101(1):295-309. PubMed ID: 29103706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]