BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34376733)

  • 1. Glioblastoma invasion factor ODZ1 is induced by microenvironmental signals through activation of a Stat3-dependent transcriptional pathway.
    Vidal V; Gutierrez O; Talamillo A; Velasquez C; Fernandez-Luna JL
    Sci Rep; 2021 Aug; 11(1):16196. PubMed ID: 34376733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA.
    Talamillo A; Grande L; Ruiz-Ontañon P; Velasquez C; Mollinedo P; Torices S; Sanchez-Gomez P; Aznar A; Esparis-Ogando A; Lopez-Lopez C; Lafita C; Berciano MT; Montero JA; Vazquez-Barquero A; Segura V; Villagra NT; Pandiella A; Lafarga M; Leon J; Martinez-Climent JA; Sanz-Moreno V; Fernandez-Luna JL
    Oncogene; 2017 Mar; 36(12):1733-1744. PubMed ID: 27641332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIF2α Upregulates the Migration Factor ODZ1 under Hypoxia in Glioblastoma Stem Cells.
    Carcelén M; Velásquez C; Vidal V; Gutierrez O; Fernandez-Luna JL
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054927
    [No Abstract]   [Full Text] [Related]  

  • 4. The Invasion Factor ODZ1 Is Upregulated through an Epidermal Growth Factor Receptor-Induced Pathway in Primary Glioblastoma Cells.
    Velasquez C; Gutierrez O; Carcelen M; Fernandez-Luna JL
    Cells; 2024 Apr; 13(9):. PubMed ID: 38727302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia Can Induce Migration of Glioblastoma Cells Through a Methylation-Dependent Control of
    Velásquez C; Mansouri S; Gutiérrez O; Mamatjan Y; Mollinedo P; Karimi S; Singh O; Terán N; Martino J; Zadeh G; Fernández-Luna JL
    Front Oncol; 2019; 9():1036. PubMed ID: 31649891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TROY signals through JAK1-STAT3 to promote glioblastoma cell migration and resistance.
    Ding Z; Kloss JM; Tuncali S; Tran NL; Loftus JC
    Neoplasia; 2020 Sep; 22(9):352-364. PubMed ID: 32629176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma.
    McFarland BC; Hong SW; Rajbhandari R; Twitty GB; Gray GK; Yu H; Benveniste EN; Nozell SE
    PLoS One; 2013; 8(11):e78728. PubMed ID: 24244348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RBPJ contributes to the malignancy of glioblastoma and induction of proneural-mesenchymal transition via IL-6-STAT3 pathway.
    Zhang G; Tanaka S; Jiapaer S; Sabit H; Tamai S; Kinoshita M; Nakada M
    Cancer Sci; 2020 Nov; 111(11):4166-4176. PubMed ID: 32885530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling Pathways Regulating the Expression of the Glioblastoma Invasion Factor
    Carcelen M; Velasquez C; Vidal V; Gutiérrez O; Fernández-Luna JL
    Biomedicines; 2022 May; 10(5):. PubMed ID: 35625843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1.
    Loeffler S; Fayard B; Weis J; Weissenberger J
    Int J Cancer; 2005 Jun; 115(2):202-13. PubMed ID: 15688401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas.
    Lee TL; Yeh J; Van Waes C; Chen Z
    Mol Cancer Ther; 2006 Jan; 5(1):8-19. PubMed ID: 16432158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin Induces Apoptosis in Glioblastoma Cells by Suppressing Axl/IL-6/STAT3 Signaling Pathway.
    Kim HI; Lee SJ; Choi YJ; Kim MJ; Kim TY; Ko SG
    Am J Chin Med; 2021; 49(3):767-784. PubMed ID: 33657989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition.
    Wu J; Zhang J; Shen B; Yin K; Xu J; Gao W; Zhang L
    J Exp Clin Cancer Res; 2015 Oct; 34():116. PubMed ID: 26452542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma.
    Zheng Q; Han L; Dong Y; Tian J; Huang W; Liu Z; Jia X; Jiang T; Zhang J; Li X; Kang C; Ren H
    Neuro Oncol; 2014 Sep; 16(9):1229-43. PubMed ID: 24861878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3.
    Zhang C; Mukherjee S; Tucker-Burden C; Ross JL; Chau MJ; Kong J; Brat DJ
    Mol Oncol; 2017 Mar; 11(3):280-294. PubMed ID: 28100038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells.
    Ghosh MK; Sharma P; Harbor PC; Rahaman SO; Haque SJ
    Oncogene; 2005 Nov; 24(49):7290-300. PubMed ID: 16007122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells.
    Stechishin OD; Luchman HA; Ruan Y; Blough MD; Nguyen SA; Kelly JJ; Cairncross JG; Weiss S
    Neuro Oncol; 2013 Feb; 15(2):198-207. PubMed ID: 23262510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes.
    Lo HW; Cao X; Zhu H; Ali-Osman F
    Mol Cancer Res; 2010 Feb; 8(2):232-45. PubMed ID: 20145033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway.
    Couto M; Coelho-Santos V; Santos L; Fontes-Ribeiro C; Silva AP; Gomes CMF
    J Cell Physiol; 2019 Nov; 234(11):19750-19760. PubMed ID: 30937892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bradykinin B1 receptor contributes to interleukin-8 production and glioblastoma migration through interaction of STAT3 and SP-1.
    Liu YS; Hsu JW; Lin HY; Lai SW; Huang BR; Tsai CF; Lu DY
    Neuropharmacology; 2019 Jan; 144():143-154. PubMed ID: 30366000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.