These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34376736)
1. Nanostructured versus flat compact electrode for triboelectric nanogenerators at high humidity. Karimi M; Seddighi S; Mohammadpour R Sci Rep; 2021 Aug; 11(1):16191. PubMed ID: 34376736 [TBL] [Abstract][Full Text] [Related]
2. A high-performance triboelectric nanogenerator with improved output stability by construction of biomimetic superhydrophobic nanoporous fibers. Zhang JH; Li Y; Hao X Nanotechnology; 2020 May; 31(21):215401. PubMed ID: 32018228 [TBL] [Abstract][Full Text] [Related]
3. Self-Powered TENG with High Humidity Sensitivity from PVA Film Modified by LiCl and MXene. Wang J; Xia Z; Yao H; Zhang Q; Yang H ACS Appl Mater Interfaces; 2023 Oct; 15(40):47208-47220. PubMed ID: 37782003 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of flexible self-powered humidity sensor based on super-hydrophilic titanium oxide nanotube arrays. Farahani E; Mohammadpour R Sci Rep; 2020 Aug; 10(1):13032. PubMed ID: 32747666 [TBL] [Abstract][Full Text] [Related]
5. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
6. Achieving Ultrahigh Effective Surface Charge Density of Direct-Current Triboelectric Nanogenerator in High Humidity. Liu L; Zhao Z; Li Y; Li X; Liu D; Li S; Gao Y; Zhou L; Wang J; Wang ZL Small; 2022 Jun; 18(24):e2201402. PubMed ID: 35560726 [TBL] [Abstract][Full Text] [Related]
7. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na Cui C; Wang X; Yi Z; Yang B; Wang X; Chen X; Liu J; Yang C ACS Appl Mater Interfaces; 2018 Jan; 10(4):3652-3659. PubMed ID: 29313665 [TBL] [Abstract][Full Text] [Related]
8. Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators. Ren Z; Ding Y; Nie J; Wang F; Xu L; Lin S; Chen X; Wang ZL ACS Appl Mater Interfaces; 2019 Feb; 11(6):6143-6153. PubMed ID: 30666864 [TBL] [Abstract][Full Text] [Related]
9. Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect. Jo S; Kim I; Jayababu N; Kim D Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260477 [TBL] [Abstract][Full Text] [Related]
10. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. Lin ZH; Xie Y; Yang Y; Wang S; Zhu G; Wang ZL ACS Nano; 2013 May; 7(5):4554-60. PubMed ID: 23597018 [TBL] [Abstract][Full Text] [Related]
11. Density-of-States Matching-Induced Ultrahigh Current Density and High-Humidity Resistance in a Simply Structured Triboelectric Nanogenerator. Sun Q; Liang F; Ren G; Zhang L; He S; Gao K; Gong Z; Zhang Y; Kang X; Zhu C; Song Y; Sheng H; Lu G; Yu HD; Huang W Adv Mater; 2023 Apr; 35(14):e2210915. PubMed ID: 36637346 [TBL] [Abstract][Full Text] [Related]
12. Flexible, humidity- and contamination-resistant superhydrophobic MXene-based electrospun triboelectric nanogenerators for distributed energy harvesting applications. Sardana S; Sharma V; Beepat KG; Sharma DP; Chawla AK; Mahajan A Nanoscale; 2023 Dec; 15(47):19369-19380. PubMed ID: 38014549 [TBL] [Abstract][Full Text] [Related]
13. Versatile surface for solid-solid/liquid-solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces. Chung J; Cho H; Yong H; Heo D; Rim YS; Lee S Sci Technol Adv Mater; 2020; 21(1):139-146. PubMed ID: 32194877 [TBL] [Abstract][Full Text] [Related]
14. Enhanced performances of triboelectric nanogenerators by filling hierarchical flower-like TiO Jian G; Meng Q; Jiao Y; Meng F; Cao Y; Wu M Nanoscale; 2020 Jul; 12(26):14160-14170. PubMed ID: 32602513 [TBL] [Abstract][Full Text] [Related]
15. Humidity-Resistant, Conductive Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Human-Machine Interaction Sensing. He J; Xue Y; Liu H; Li J; Liu Q; Zhao Y; Mu L; Sun CL; Qu M ACS Appl Mater Interfaces; 2023 Sep; 15(37):43963-43975. PubMed ID: 37690053 [TBL] [Abstract][Full Text] [Related]
16. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting. Xiao TX; Jiang T; Zhu JX; Liang X; Xu L; Shao JJ; Zhang CL; Wang J; Wang ZL ACS Appl Mater Interfaces; 2018 Jan; 10(4):3616-3623. PubMed ID: 29293321 [TBL] [Abstract][Full Text] [Related]
17. Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. Mi HY; Jing X; Meador MAB; Guo H; Turng LS; Gong S ACS Appl Mater Interfaces; 2018 Sep; 10(36):30596-30606. PubMed ID: 30114352 [TBL] [Abstract][Full Text] [Related]
18. An Ultrarobust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation. Fu S; He W; Tang Q; Wang Z; Liu W; Li Q; Shan C; Long L; Hu C; Liu H Adv Mater; 2022 Jan; 34(2):e2105882. PubMed ID: 34617342 [TBL] [Abstract][Full Text] [Related]
19. A β-cyclodextrin enhanced polyethylene terephthalate film with improved contact charging ability in a high humidity environment. Wang N; Liu Y; Wu Y; Li Z; Wang D Nanoscale Adv; 2021 Oct; 3(21):6063-6073. PubMed ID: 36133934 [TBL] [Abstract][Full Text] [Related]
20. Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites. Zheng Y; Li J; Xu T; Cui H; Li X Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]