These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34377532)
1. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays. Shi W; Xue M; Qian X; Xu X; Gao X; Zheng D; Liu W; Wu F; Gao C; Shen J; Cao X Glob Chall; 2021 Aug; 5(8):2000128. PubMed ID: 34377532 [TBL] [Abstract][Full Text] [Related]
2. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals. Shi W; Liu X; Deng T; Huang S; Ding M; Miao X; Zhu C; Zhu Y; Liu W; Wu F; Gao C; Yang SW; Yang HY; Shen J; Cao X Adv Mater; 2020 Aug; 32(33):e1907404. PubMed ID: 32656808 [TBL] [Abstract][Full Text] [Related]
3. Structural/Compositional-Tailoring of Nickel Hexacyanoferrate Electrodes for Highly Efficient Capacitive Deionization. Bao Y; Hao J; Zhang S; Zhu D; Li F Small; 2023 Aug; 19(34):e2300384. PubMed ID: 37116117 [TBL] [Abstract][Full Text] [Related]
4. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance. Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429 [TBL] [Abstract][Full Text] [Related]
5. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization. Rethinasabapathy M; Bhaskaran G; Hwang SK; Ryu T; Huh YS Chemosphere; 2023 Sep; 336():139256. PubMed ID: 37331664 [TBL] [Abstract][Full Text] [Related]
6. Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance. Aldalbahi A; Rahaman M; Govindasami P; Almoiqli M; Altalhi T; Mezni A Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773205 [TBL] [Abstract][Full Text] [Related]
7. Bismuth Nanoparticle-Embedded Porous Carbon Frameworks as a High-Rate Chloride Storage Electrode for Water Desalination. Shi W; Qian X; Xue M; Que W; Gao X; Zheng D; Liu W; Wu F; Shen J; Cao X; Gao C ACS Appl Mater Interfaces; 2021 May; 13(18):21149-21156. PubMed ID: 33905227 [TBL] [Abstract][Full Text] [Related]
8. Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination. Gong A; Zhao Y; Liang B; Li K J Colloid Interface Sci; 2022 Jan; 605():432-440. PubMed ID: 34332416 [TBL] [Abstract][Full Text] [Related]
9. Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review. Lin P; Liao M; Yang T; Sheng X; Wu Y; Xu X Front Chem; 2020; 8():575350. PubMed ID: 33330363 [TBL] [Abstract][Full Text] [Related]
10. Faradaic Electrodes Open a New Era for Capacitive Deionization. Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769 [TBL] [Abstract][Full Text] [Related]
11. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Shi W; Gao X; Mao J; Qian X; Liu W; Wu F; Li H; Zeng Z; Shen J; Cao X Front Chem; 2020; 8():415. PubMed ID: 32500060 [TBL] [Abstract][Full Text] [Related]
12. Na Cao J; Wang Y; Wang L; Yu F; Ma J Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040 [TBL] [Abstract][Full Text] [Related]
13. Cu-based MOF-derived architecture with Cu/Cu Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915 [TBL] [Abstract][Full Text] [Related]
14. Recent Advances in Faradic Electrochemical Deionization: System Architectures Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859 [TBL] [Abstract][Full Text] [Related]
15. Spinel LiMn Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838 [TBL] [Abstract][Full Text] [Related]
16. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater. Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902 [TBL] [Abstract][Full Text] [Related]
17. Enhanced redox kinetics of Prussian blue analogues for superior electrochemical deionization performance. Li J; Wang R; Han L; Wang T; El-Bahy ZM; Mai Y; Wang C; Yamauchi Y; Xu X Chem Sci; 2024 Jul; 15(30):11814-11824. PubMed ID: 39092121 [TBL] [Abstract][Full Text] [Related]
18. Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization. Tu X; Liu Y; Wang K; Ding Z; Xu X; Lu T; Pan L J Colloid Interface Sci; 2023 Jul; 642():680-690. PubMed ID: 37031475 [TBL] [Abstract][Full Text] [Related]
19. Various cell architectures of capacitive deionization: Recent advances and future trends. Tang W; Liang J; He D; Gong J; Tang L; Liu Z; Wang D; Zeng G Water Res; 2019 Mar; 150():225-251. PubMed ID: 30528919 [TBL] [Abstract][Full Text] [Related]
20. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. Datar SD; Mane R; Jha N Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]