These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3437788)
1. Oxazaphosphorine effects in L 5222 rat leukemia. Pohl J; Reissmann T; Voegeli R Methods Find Exp Clin Pharmacol; 1987 Sep; 9(9):589-94. PubMed ID: 3437788 [TBL] [Abstract][Full Text] [Related]
2. Evidence of a role for NK cells in oxazaphosphorine-mediated tumor regression. Reissmann T; Hilgard P; Voegeli R; Zeller J J Cancer Res Clin Oncol; 1989; 115(6):525-30. PubMed ID: 2606928 [TBL] [Abstract][Full Text] [Related]
3. Biologic and therapeutic efficacy of mafosfamide in patients with metastatic renal cell carcinoma. Schomburg A; Menzel T; Hadam M; Duensing S; Körfer A; Kirchner H; Poliwoda H; Atzpodien J Mol Biother; 1992 Jun; 4(2):58-65. PubMed ID: 1515095 [TBL] [Abstract][Full Text] [Related]
4. Augmentation of host antitumor immunity by low doses of cyclophosphamide and mafosfamide in two animal tumor models. Reissmann T; Voegeli R; Pohl J; Hilgard P Cancer Immunol Immunother; 1989; 28(3):179-84. PubMed ID: 2924329 [TBL] [Abstract][Full Text] [Related]
5. Elimination of immune suppressor mechanisms in humans by oxazaphosphorines. Berd D; Mastrangelo MJ Methods Find Exp Clin Pharmacol; 1987 Sep; 9(9):569-77. PubMed ID: 2963936 [TBL] [Abstract][Full Text] [Related]
6. Preclinical and early clinical trial with mafosfamide as immune modulator. Klein HO; Kreysch HG; Coerper C; Voigt P; Ruff I Methods Find Exp Clin Pharmacol; 1987 Sep; 9(9):627-40. PubMed ID: 3325719 [TBL] [Abstract][Full Text] [Related]
7. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Bracci L; Moschella F; Sestili P; La Sorsa V; Valentini M; Canini I; Baccarini S; Maccari S; Ramoni C; Belardelli F; Proietti E Clin Cancer Res; 2007 Jan; 13(2 Pt 1):644-53. PubMed ID: 17255288 [TBL] [Abstract][Full Text] [Related]
8. Cell-cycle disruptions and apoptosis induced by the cyclophosphamide derivative mafosfamide. Davidoff AN; Mendelow BV Exp Hematol; 1993 Jul; 21(7):922-7. PubMed ID: 8319782 [TBL] [Abstract][Full Text] [Related]
9. Modulation of IL-10/IL-10R expression by mafosfamide, a derivative of 4-hydroxycyclophosphamide, in a rat B-cell lymphoma. Rico MJ; Matar P; Scharovsky OG Biocell; 2012 Aug; 36(2):91-5. PubMed ID: 23185784 [TBL] [Abstract][Full Text] [Related]
10. Mafosfamide as a new anticancer agent: preclinical investigations and clinical trials. Mazur L; Opydo-Chanek M; Stojak M; Wojcieszek K Anticancer Res; 2012 Jul; 32(7):2783-9. PubMed ID: 22753738 [TBL] [Abstract][Full Text] [Related]
11. A comparison of the effects of ifosfamide vs. mafosfamide treatment on intracellular glutathione levels and immunological functions of immunocompetent lymphocyte subsets. Botzler C; Kis K; Issels R; Multhoff G Exp Hematol; 1997 Apr; 25(4):338-44. PubMed ID: 9131009 [TBL] [Abstract][Full Text] [Related]
12. Identification of a methylcholanthrene-induced aldehyde dehydrogenase in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Sreerama L; Sladek NE Cancer Res; 1994 Apr; 54(8):2176-85. PubMed ID: 8174125 [TBL] [Abstract][Full Text] [Related]
13. High-dose selection with mafosfamide results in sensitivity to DNA cross-linking agents: characterization of hypersensitive cell lines. Fritz G; Hengstler JG; Kaina B Cancer Res; 1997 Feb; 57(3):454-60. PubMed ID: 9012473 [TBL] [Abstract][Full Text] [Related]
14. In vivo antitumor activity and host toxicity of methoxymorpholinyl doxorubicin: role of cytochrome P450 3A. Quintieri L; Rosato A; Napoli E; Sola F; Geroni C; Floreani M; Zanovello P Cancer Res; 2000 Jun; 60(12):3232-8. PubMed ID: 10866316 [TBL] [Abstract][Full Text] [Related]
15. Oxazaphosphorine cytostatics: past-present-future. Seventh Cain Memorial Award lecture. Brock N Cancer Res; 1989 Jan; 49(1):1-7. PubMed ID: 2491747 [TBL] [Abstract][Full Text] [Related]
16. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. Proietti E; Greco G; Garrone B; Baccarini S; Mauri C; Venditti M; Carlei D; Belardelli F J Clin Invest; 1998 Jan; 101(2):429-41. PubMed ID: 9435316 [TBL] [Abstract][Full Text] [Related]
17. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Chen L; Waxman DJ Cancer Res; 1995 Feb; 55(3):581-9. PubMed ID: 7834628 [TBL] [Abstract][Full Text] [Related]
18. Systematic preclinical study on the therapeutic properties of recombinant human interleukin 2 for the treatment of metastatic disease. Talmadge JE; Phillips H; Schindler J; Tribble H; Pennington R Cancer Res; 1987 Nov; 47(21):5725-32. PubMed ID: 3499218 [TBL] [Abstract][Full Text] [Related]
19. [Enhancement of the antitumor transplantation resistance in rats by the antileukemia drug busulfan (author's transl)]. Mizushima Y Hokkaido Igaku Zasshi; 1980 Nov; 55(6):537-42. PubMed ID: 7274985 [TBL] [Abstract][Full Text] [Related]
20. [Enhanced immunogenicity of xenogenized tumor cells in rats pretreated with cyclophosphamide (author's transl)]. Terashima M Hokkaido Igaku Zasshi; 1980 Nov; 55(6):495-9. PubMed ID: 6456215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]