These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34377941)

  • 1. Constraints on the Ecomorphological Convergence of Zooplanktivorous Butterflyfishes.
    Hodge JR; Song Y; Wightman MA; Milkey A; Tran B; Štajner A; Roberts AS; Hemingson CR; Wainwright PC; Price SA
    Integr Org Biol; 2021; 3(1):obab014. PubMed ID: 34377941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecomorphological convergence in planktivorous surgeonfishes.
    Friedman ST; Price SA; Hoey AS; Wainwright PC
    J Evol Biol; 2016 May; 29(5):965-78. PubMed ID: 26809907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecology shapes the evolutionary trade-off between predator avoidance and defence in coral reef butterflyfishes.
    Hodge JR; Alim C; Bertrand NG; Lee W; Price SA; Tran B; Wainwright PC
    Ecol Lett; 2018 Jul; 21(7):1033-1042. PubMed ID: 29744987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupled diversification dynamics of feeding morphology following a major functional innovation in marine butterflyfishes.
    Konow N; Price S; Abom R; Bellwood D; Wainwright P
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28768889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Evolution of Color Pattern in Butterflyfishes (Chaetodontidae).
    Alfaro ME; Karan EA; Schwartz ST; Shultz AJ
    Integr Comp Biol; 2019 Sep; 59(3):604-615. PubMed ID: 31292612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment.
    Lindgren AR; Pankey MS; Hochberg FG; Oakley TH
    BMC Evol Biol; 2012 Jul; 12():129. PubMed ID: 22839506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A forceful upper jaw facilitates picking-based prey capture: biomechanics of feeding in a butterflyfish, Chaetodon trichrous.
    Copus JM; Gibb AC
    Zoology (Jena); 2013 Dec; 116(6):336-47. PubMed ID: 24156977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prey capture in long-jawed butterflyfishes (Chaetodontidae): the functional basis of novel feeding habits.
    Ferry-Graham LA; Wainwright PC; Bellwood DR
    J Exp Mar Biol Ecol; 2001 Jan; 256(2):167-184. PubMed ID: 11164861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution and feeding substrate of butterflyfishes (family Chaetodontidae) on an Okinawan coral reef.
    Nanami A
    PeerJ; 2020; 8():e9666. PubMed ID: 32832278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spots and stripes: ecology and colour pattern evolution in butterflyfishes.
    Kelley JL; Fitzpatrick JL; Merilaita S
    Proc Biol Sci; 2013 Apr; 280(1757):20122730. PubMed ID: 23427170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of morphological traits shaping the feeding guilds in the intertidal mudflat fishes of the Indian Sundarbans.
    Podder A; Panja S; Chaudhuri A; Roy A; Biswas M; Homechaudhuri S
    J Fish Biol; 2021 Sep; 99(3):1010-1031. PubMed ID: 34021587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), parasites transmitted to butterflyfishes via predation of coral polyps.
    Martin SB; Sasal P; Cutmore SC; Ward S; Aeby GS; Cribb TH
    Int J Parasitol; 2018 Dec; 48(14):1107-1126. PubMed ID: 30367863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.
    Johansen JL; Jones GP
    Ecol Appl; 2013 Sep; 23(6):1504-17. PubMed ID: 24147419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatility and specialization in labrid fishes: ecomorphological implications.
    Sanderson SL
    Oecologia; 1990 Sep; 84(2):272-279. PubMed ID: 28312765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trophic apparatus in cyprinodontiform fishes: functional specializations for picking and scraping behaviors.
    Hernandez LP; Gibb AC; Ferry-Graham L
    J Morphol; 2009 Jun; 270(6):645-61. PubMed ID: 19107942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies).
    DeHaan LM; Burns MD; Egan JP; Bloom DD
    Am Nat; 2023 Dec; 202(6):830-850. PubMed ID: 38033182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys.
    Marroig G; Cheverud JM
    Evolution; 2005 May; 59(5):1128-42. PubMed ID: 16136810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability.
    Hjelm J; Persson L; Christensen B
    Oecologia; 2000 Feb; 122(2):190-199. PubMed ID: 28308372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae).
    Zelditch ML; Ye J; Mitchell JS; Swiderski DL
    Evolution; 2017 Mar; 71(3):633-649. PubMed ID: 28075012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.